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This dissertation deals with the development of a method to predict the orbital

lifetimes of uncontrolled free tethers and tether-trailing satellites originating in low-to-

moderate altitude Earth orbits. The problem is solved by application of the "empirical

method". Two mathematical models to simulate the orbital evolution of tethered

systems are developed. In both models the system is discretized into a series of

interconnected point masses, orbiting an oblate Earth and transiting an oblate,

rotating, temporally and globally averaged atmosphere. For aerodynamic drag

calculations, tether segments are modeled as right circular cylinders, and any end-body

is modeled as a sphere. Drag coefficients vary as a function of shape and Knudsen
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number. In the "multibody model", connections between masses are elastic, and the

system is free to assume any orientation. Newtonian equations of motion are

numerically integrated. In the "orbital element propagation model", connections

between masses are inelastic, and the system is constrained to remain aligned along

the local vertical. Gauss' form of Lagrange's Planetary Equations, in terms of

equinoctial elements, are used to propagate the orbital elements describing the orbit

of the system's center of mass. The element propagation model is shown to provide,

for initially unstretched systems aligned along the local vertical, accurate results, very

quickly, as compared to those obtained using the multibody model. An algorithm to

train feed-forward artificial neural networks, by minimizing the sum of the squares of

percent errors, is derived and shown to be invaluable in training networks to represent

widely-spread real-valued data. A hybrid training approach, using the derived

algorithm in conjunction with the standard backpropagation training algorithm, is

described and demonstrated. This approach often reduces network training time, and

it is used to train three networks with lifetime data provided by the element propaga-

tion model: one to predict the orbital lifetimes of free tethers, one to predict lifetimes

of upward-deployed subsatellites trailing a tether, and one to provide correction

factors that account for the effects of initial orbit inclination and argument of latitude.

The accuracies of network-predicted lifetimes, as compared to those obtained using

the multibody model, are demonstrated in 90 cases with randomly chosen initial

conditions and system physical dimensions. In all cases, the network's results are

shown to be accurate to within ± 20% of results obtained using the multibody model.
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INTRODUCTION

The idea of using tethers in space is not a new concept. In 1895, Tsiolkovsky

suggested connecting large masses in space by a long thin string.1,2 In 1960,

Artsutanov envisioned an Earth-based "beanstalk", rooted at the equator and extend-

ing to geosynchronous altitude, which would allow one to leave the planet by simply

climbing to the top and letting go.3'4

The first tether experiments in space were conducted in 1966, during the last

two Gemini missions. In both tests, the manned Gemini spacecraft was docked to an

unmanned Agena rocket, a 100 foot tether was attached to both vehicles, and the

vehicles were separated.5'6 During Gemini 6, the tethered system was spun about its

center of mass, using the Gemini thruster reaction control system, to provide a low

artificial gravity. On Gemini 7, the reaction control system was used to orient the

vehicles along the local vertical, and passive gravity-gradient stabilization was achieved

when the control system was deactivated.

In 1972, M. D. Grossi, a radiophysicist at the Harvard-Smithsonian Center for

Astrophysics (SAO), proposed that NASA deploy from the Space Shuttle a 20-to-100

kilometer (kin) electrodynamic tether to be used as an antenna to radiate electromag-

netic waves in the ULF band.7 In 1974, SAO gave the project the name SKYHOOK,

and made the study of the long antenna's dynamics a top priority.

1
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Professor Guiseppe Colombo, also at SAO, was given the lead in the dynamical

analysis, and he quickly realized that a long wire could also serve as a "Shuttle-borne

skyhook" to support a scientific satellite.8 This led to a series of studies at SAC and

elsewhere in the United States and Italy on uses for a so-called Tethered Satellite

System (TSS). The work culminated in an agreement to develop and fly such a system

on the U.S. Space Shuttle.'

Currently, NASA plans two experiments to confirm basic tether phenomena

and to demonstrate the feasibility of simple tether operational concepts. The first,

TSS-1, is devoted to electrodynamics experimentation. It involves a 500 kilogram (kg)

satellite, deployed upward (i.e., away from Earth) on a 20 km tether from the Space

Shuttle's 300 km altitude orbit.10 TSS-2 will demonstrate the downward deployment

and retrieval of the satellite on a 100 km non-conductive tether.'1

Shuttle-borne operations are only one item on a growing list of proposed

tethered satellite operations categories. Other proposals include1 2

(a) Using expendable launch vehicles as "parent" craft.

(b) Using a space station as the tethered parent vehicle for

(1) tether initiated reentry or orbit transfer

of a subsatellite, and/or
(2) local area operations requiring return to

the space station.

(c) Using tethers and/or tethered subsatellite(s) in conjunction

with conventional satellites. Possibilities include payload
lofting, (parent) satellite maneuvering, electrodynamic thrust
and/or power generation, and ULF/ELF/VLF communications.

Many uses of tethered systems have been proposed and studied by the aero-

space community in the past decade. Some scenarios include the purposeful cutting of
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the tether at the parent satellite and/or the subsatellite. Furthermore, circumstances

may require that a tether be cut as an emergency measure, or a tether may be

unintentionally cut or broken. Thus, in a number of possible scenarios, a tethered

system may be reduced to an uncontrolled distributed mass, with or without an

attached end-body, orbiting under the influence of only natural forces. Given that

such an occurrence is possible, and may, in fact, be planned, a method of estimating

an uncontrolled system's lifetime is needed.

Very little definitive research has been done in this area. In 1987,

Bergamaschi and Morana 13 presented an order of magnitude estimate for the orbital

lifetime of a free tether (i.e., one with no end-masses) released from either a Shuttle

or Space Station orbit. They compared results obtained for a 20 km tether using

three models:

(a) A simple analytical model which treated the tether as a point mass.

(b) A rigid rod model, which used distributed gravitational and drag

forces.

(c) A hinged rigid rod model, which consisted of two equal length

segments, and again used distributed gravitational and drag forces.

In each case only (orbital) planar motion was allowed, and a spherical Earth and

non-rotating spherical atmosphere were modeled. The dynamical equations of motion

for the rigid rod models were integrated numerically, and the results compared to each

other and those of the analytical model. It was learned that there was at least order

of magnitude agreement in the results provided by the three models.

In a later study, Bergamaschi1" used King-Hele's" semi-analytical single-mass

orbital lifetime methods to calculate the orbital lifetime of a satellite trailing a tether.
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To employ King-Hele's methods, the total mass of the system and a representative

cross-sectional area were assumed to be located at the satellite's position. Three

scenarios were considered:

(a) A TSS-1 (satellite deployed 20 km upward from Shuttle) freely

decaying orbit after the tether was severed at the Shuttle.

(b) A reentry mission from a Space Station (satellite deployed 20 km
below Station).

(c) Martian atmosphere entry by a free flying probe trailing a tether.

In each case orbit plane orientation was considered constant. Unfortunately, the

results were not compared with those of any tethered satellite computer simulations,

leaving the validity of using King-Hele's methods in these scenarios in question.

The objective of this research project was to develop a general method for

predicting the orbital lifetime of uncontrolled free tethers and satellites trailing a

tether. These scenarios currently seem much more likely than an instance of a

"complete" tethered system (i.e., parent-tether-subsatelite) becoming uncontrolled.

The approach used is well known: Compile a database of experimental results,

study those results to identify dependent relationships and trends, and derive mathe-

matical expressions to model the relationship between dependent and independent

variables. This is known as the "empirical method"."6

Results obtained using this procedure are successfully employed in many fields.

For example, mechanical engineers performing flow analyses routinely use empirically-

derived expressions to calculate convection heat transfer coefficients."7 Another

example occurs in aeronautical engineering, where empirically-derived relations are

often used to determine the values of various aerodynamic force coefficients for a
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given flight vehicle in a configuration of interest. The well-known equation of state

for a perfect gas, P = pRT, is another result that may be derived empirically."8 There

are numerous other possible examples, from many areas of science and engineering.

In short, the empirical method is used when the phenomena being investigated

is sufficiently complex that mathematical models are either not able to satisfactorily

represent the phenomena, or are so complex themselves that they defy analytical

solution.

The orbital evolution of an uncontrolled tethered system in Earth orbit is such

a phenomena. The system operates in a nonlinear, non-trivial gravity field, experi-

ences aerodynamic forces which are nonlinear in altitude, attitude, and velocity, and is

subjected to a variety of additional internal and external forces. A database of

historical lifetime data, such as exists for single-mass satellites, is not available for

these systems. Furthermore, the orbital decay of these systems cannot be realistically

studied experimentally, per se.

We can, however, construct a mathematical model of the dynamical situation,

solve the mathematical equations numerically for a large variety of cases, thereby

creating a "historical database" of sorts, and derive representative expressions from the

data. This is the approach used in this research project.

To obtain data for analysis, two mathematical models of an uncontrolled

tethered system are developed. The first, a multibody model, includes an extensible,

non-conductive tether connecting end-bodies modeled as spheres. It is used as a

"truth" model. The second, a more efficient, dynamically simplified model, is based on

an orbital element propagation technique.
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In both models, the tethered system orbits an oblate Earth and transits an

oblate, rotating, temporally and globally averaged reference atmosphere. Aero-

dynamic forces are calculated using drag coefficients which vary as a function of shape

and Knudsen number.

There are many independent variables which will affect the orbital lifetime of a

tethered system. These may be grouped under three headings:

(a) The initial orbit of the system's center of mass.

(b) The initial motion and orientation of the system about its

center of mass.

(c) The system's physical dimensions and characteristics.

The mathematical description in each of these categories requires several variables.

For example, the center of mass' initial orbit can be described by using the six classical

orbital elements: the orbit's semi-major axis, eccentricity, inclination, ascending node

longitude, argument of perigee, and true anomaly. There are, literally, an infinite

number of possible initial configurations and motions of the system about its center of

mass. The description and modeling of these characteristics can consequently vary

from trivial to nearly impossible. Even the system's physical characteristics offer a

multitude of options. These include the tether's length, diameter, mass density, and

elastic properties, in addition to the size and shape of any end-body. The location and

method used to attach the tether to an end-body may also affect the system's motion.

Clearly, the scope of the present study must be narrowed. This is possible for

several reasons. First, the vast majority of planned or proposed Earth-orbiting

tethered satellite missions involve deployment in 28.5 * inclination orbits, at low to
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moderate altitudes - 200 km to 500 km. Second, the missions typically involve tether

lengths of either 10-20 km or near 100 km. Third, the parent craft will probably be in

a circular or near-circular orbit. Fourth, the deployed tether, with or without an

attached subsatellite, will probably be maintained along, or near, the local vertical.

These characteristics of probable tethered satellite missions provide natural boundaries

for this research project.

First, in this work, tether length is limited to a maximum of 125 km. This is

the maximum length discussed in NASA's Tethers in Space Handbook for any planned

or proposed Earth mission.' 9 Tether diameter is assumed to be 2 millimeters, al-

though the general effect of different diameters is investigated. The mass density and

elastic properties of the tether are assumed to be those of Kevlar 29. In so doing, the

physical properties and diameter assumed here will coincide with those most commonly

used in the current literature. Next, the deployed tether, with or without an attached

subsatellite, is initially unstretched, aligned along the local vertical, orbiting as a rigid

rod. These conditions are the goal of many of the various control schemes which

have been proposed for use with tethered systems.2' We also assume that the tether

is connected to the center of mass of any attached end-body, and ignore any tether -

end-body aerodynamic interference or interaction effects. We will study only direct

orbits, as no uses of tethered systems in retrograde orbits have been proposed.

Finally, the radii of perigee and apogee of the center of mass' initial orbit will be

limited to 6578 km and 6878 km, respectively (i.e., 200 and 500 km altitude in an

equatorial orbit). The upper limit corresponds to the maximum altitude of currently
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proposed missions, as discussed earlier, and the lower limit is based on Bergamaschi's

finding21 that the orbital lifetime of tethers, once they reach 200 km altitude, is very

short. We will consider a system's orbital lifetime to be complete when the system

center of mass reaches 150 km altitude.

Even after applying the constraints just described, a tethered system's orbital

lifetime will still depend on several independent variables: the center of mass' initial

orbit, the tether's length, and the mass and size of any attached end-body. Although

it is theoretically possible for one to analytically identify and express the relationship

between each of these variables (or groups of variables) and the orbital lifetime, it is

certainly not a task with an assured result. The process is complicated by the interde-

pendence of many of the variables. For example, changing the argument of perigee of

the center of mass' initial orbit will alter the latitude, and, consequently, the altitude

above an oblate Earth, at which the point of closest approach occurs. This, in turn,

will affect the system's orbital energy loss due to aerodynamic drag, thereby altering

the system's orbital lifetime. Unfortunately, changing the initial orbit's inclination will

affect the variation caused by changes in the argument of perigee. For example, a

90 argument of perigee and a high inclination will result in a much more northerly

perigee latitude than the same argument of perigee in a nearly equatorial orbit.

Hence, it is clear that we are challenged with deriving a very complicated, nonlinear

mapping in a high-dimension space.

Traditional curve fitting techniques - postulating the form of a mathematical

expression describing the relationship between one or more independent variables and
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the orbital lifetime, and using a least squares method to adjust the expression's

coefficients to minimize the error between the calculated and empirical data - may,

or may not, yield satisfactory results when applied to the current situation. It is more

likely that a solution may be obtained by training an artificial neural network (ANN)

to represent the empirical data.

Neural network research dates back to the late 1800's, with some of the initial

work being done by Freud.' Prior to his psychoanalysis investigations, Freud

attempted to ".... represent psychical processes as quantitatively determinate states of

specifiable material particles .... '...2? The first mechanical implementation of an ANN

was a hydraulic device designed by Russell, in 1913.2 This mechanism simulated the

action of nervous discharges, and was able to "learn" by experience.?2 In 1943,

McCulloch and Pitts derived the first mathematical model of an ANN.r26 2 In 1949,

Hebb developed the first learning algorithm for ANNs.3'29 Minsky and Edmonds

studied the work of McCulloch, Pitts, and Hebb, and are credited with creating the

first electronic implementation of an ANN.3 ,` Theirs was a 40 neuron machine, with

synapses (i.e., connections between neurons) that adjusted their conductances accord-

ing to the success of performing a specified task.32 The device successfully modeled

the behavior of a rat in a maze searching for food.33-M In the four decades following

this 1951 invention, ANN research has experienced periods of great enthusiasm,

alternating with times of obscurity and even disfavor.35 Simpson describes no less than

27 ANN models, which represent, as he says, only a fraction of those that have been,

and continue to be, developed.'
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Without question, feed-forward networks trained using error backpropagation 37

are currently the most widely applied neural network architecture. This popularity

revolves around the demonstrated ability of backpropagation networks to learn

complicated multidimensional mappings.' In fact, it has been said that the primary

application of this type of artificial neural network is any situation that requires the

acquisition of a complex nonlinear mapping.39

Hecht-Nielson4° offers the following as a general, yet rigorous, definition of an

artificial neural system:

"A neural network is a parallel, distributed information processing
structure consisting of processing elements (which can possess a local

memory and carry out localized information processing operations)
interconnected together with unidirectional signal channels called
connections. Each processing element has a single output connection

which branches into as many collateral connections as desired (each

carrying the same signal - the processing element output signal). The
processing element output signal can be of any mathematical type
desired. All of the processing that goes on within each processing

element must be completely local; i.e., it must depend only upon the
current value of the input signal arriving at the processing element via
impinging connections and upon values stored in the processing ele-

ment's local memory."

Hecht-Nielson's "processing elements" are also often referred to in the

literature as "neurons", in recognition of the fact that artificial neural networks are

roughly based on the operating structure of the brain. Essentially, ANNs are adaptive

information processing systems that develop transformations or mappings between one

or more inputs and outputs. Instead of being given a step-by-step procedure for

carrying out the desired transformations, a network can be trained to generate its own



internal rules governing the relationships, and to refine those rules until the transfor-

mations are accomplished with acceptable accuracy. This is one of the major benefits

of using ANNs to represent multidimensional data -- a priori knowledge of a

representative function's form is not required.

Another strength of ANNs is their ability to "generalize" from specific training

data to new situations for which the data remains representative. In more familiar

terms, this is to say that properly sized and structured networks, after training,

provide a smooth nonlinear interpolation of the training data. By adjusting the

number of network layers and processing units, a designer can affect the generaliza-

tion abilities, training time, and final accuracy of a network. Once a network is

trained, an operator can disable the learning algorithm, and "freeze" the weights and

biases on the neuron connections. This will cause the network to stop adapting itself

to new data, and will provide a structure that is ready to process "real world" data.

Training can be reenabled at any time, to allow the network to adjust itself for newly

acquired data.

In recent years, multilayer neural networks have been increasingly popular for

applications in pattern recognition, classification, and function approximation. Neural

nets have been successfully used in many areas of activity, ranging from solving

scheduling optimization problems, to scoring applications for bank loans, to translating

written text to speech and vice versa." The Defense Advanced Research Projects

Agency recently reported that ANN methods, still in their infancy, have matched or

exceeded the performance of established methods used for the classification of special
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sonar and seismic signals, and for automatic target recognition with forward looking

infrared sensors, despite the many years of R&D supporting the current technolo-

gies." The scientific community has placed less emphasis on studying the ability of

ANNs to process floating point numbers, but Lapedes and Farber43 have shown that

neural nets are capable of quite accurately representing real-valued functions.

This is not to suggest that ANNs are without their shortcomings. Although

there are many examples of the successful use of ANNs, there are also some impor-

tant issues that are currently solved in practice only by trial and error. Today, the

greatest difficulties are (1) choosing the number and type of training samples required

for successful learning, where learring is deemed to have been successful when the

system generalizes correctly, and (2) using the proper network structure to solve a

given problem. With too few neurons, the network may not be powerful enough for a

given learning task. With a large number of neurons, computation becomes expensive,

and the network may have the resources to actually "memorize" the training data.

The number of layers of neurons used is another structural variable that affects how

fast a network may be trained and how well it will generalize. It has recently been

suggested that networks with more layers, and fewer units in the early layers, may

generalize better than "shallow" networks with many units in each layer." However,

narrow networks with many layers are known to be more difficult to train than broad

networks with one or two hidden layers.45

One of the best examples of the power and usefulness of a feed-forward

network composed of just three layers - input-hidden-output - is the "NET'ALK"
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network, developed by Sejnowski and Rosenberge in 1987. This network was trained,

using error backpropagation, to translate segments of English tex. into phonetic

notation for pronouncing the text. The phonetic notation was passed to an electronic

speech generator and verbalized. The three layer network had 203 input units, 80

units in the hidden layer, and 26 output units. The size of the hidden layer was

chosen after experimenting with as many as 120 units and as few as zero units. The

decision to use an 80 unit hidden layer was based on experiments which indicated that

80 units were sufficient for good performance, but not prohibitive in terms of training

time.

In studying the ability of neural nets to represent real-valued functions,

Lapedes and Farber47 found that (1) more than two hidden layers are never required,

and (2) the accuracy of the approximation is controlled by the number of neurons per

layer, not the number of layers.

Hence, relying on the experience and findings of Sejnowski, Rosenberg,

Lapedes, and Farber, the plan for this research project is to use feed-forward

networks having as few hidden layers, with as few units, as are required to represent

and interpolate the orbital lifetime data. This requires an iterative procedure of (1)

choosing a network structure, (2) attempting to train the network to represent the

training data with only acceptable errors, (3) testing the trained network's general-

ization ability, and (4) returning to (1) if the results of (2) and/or (3) are not satisfac-

tory. The number of input units used will be dictated by the number of independent
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variables. There will be one output unit, which will provide the network's approxima-

tion for the orbital lifetime.

A new training algorithm, designed specifically to train feed-forward networks

to represent any real-valued function, was derived in this work. This algorithm, used

in conjunction with a hybrid training approach, is shown to be invaluable in training

networks to represent and interpolate real-valued data which spans several orders of

magnitude.

Artificial neural networks are used in this research project to model the

relationships between various independent variables discussed earlier and the orbital

lifetime of tethered systems. One network provides the orbital lifetime of any free

tether, 10 to 125 km in length. A second network provides the lifetime of a spherical

satellite, of any mass and diameter up to 500 kg and 5 meters, respectively, trailing a

downward-deployed tether of any length between 50 and 100 km. This situation may

represent a parent satellite trailing a downward-deployed tether, perhaps after a

subsatellite has been released, or it may represent an upward-deployed subsateilite

trailing a tether, after it has been either cut, or broken free of, a parent vehicle.

The lifetimes produced by the "prediction networks" assume the center of mass

of a system of interest is initially in a 28.5 *inclination orbit, with argument of perigee

and true anomaly equal to zero. A third network produces a lifetime correction

factor, based on the system's initial orbit inclination, argument of perigee and true

anomaly. The initial longitude of the orbit's ascending node does not affect the
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calculated orbital lifetime, since the assumed shapes of the Earth and atmosphere are

symmetric about the polar axis.

A large number of randomly generated test cases are used to (1) demonstrate

the accuracy of the simplified dynamical model, (2) test the generalization abilities of

the trained networks, and (3) demonstrate the validity of the orbital lifetime prediction

technique.



MATHEMATICAL MODELS

The objective of any mathematical modeling effort is to represent, as simply

and efficiently as possible, one or more characteristics of a system of interest. In this

chapter, two models developed to numerically simulate the motion of uncontrolled

tethered satellite systems in freely-decaying Earth orbits are described. The difference

in the models is the way in which a system's dynamics are represented.

The first, a "lumped-mass" or "multibody" model, discretizes a tether into

multiple, sequentially connected, elastic segments. This approach is a type of "finite

element" method. The nonlinear, ordinary, differential equations describing the

motion of the system are numerically integrated in time.

In the second model, an "element propagation" model, the system is discretized

into multiple nonelastic segments, and "propagation" or "variational" equations

describe the time rates of change of orbital elements due to two-body and non-two-

body (perturbing) forces. These equations are used to propagate the orbital elements

describing the system center of mass' orbit.

The external forces acting on a system and the environment in which it moves

are identical in the two models. Hence the external forces model and the environ-

ment model are discussed separately.

16
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External Forces Model

There are many external forces which may affect the motion of a satellite in

Earth orbit. In 1666, Isaac Newton conceived the law of universal gravitation, and

used it to show that a satellite moving under the influence of only a more massive,

spherical, central body would travel precisely in an elliptical path.' In this

unperturbed "two-body" scenario, the orbit of a satellite would be an ellipse of

constant size and shape, in a plane fixed relative to the "fixed" stars.

In reality, a two-body elliptical orbit is perturbed by the effects of a variety of

forces. In general, forces due to the following causes will affect the orbit:

(a) non-sphericity (oblateness) of the Earth's gravitational field,

(b) Earth's atmosphere (ie., aerodynamic forces),

(c) gravitational attraction of the Sun, Moon and planets,

(d) solar radiation,

(e) other sources - magnetic fields, Earth-reflected solar

radiation, ocean and land mass tides, charged and

uncharged particle impact, and the effects of
precession and nutation of the Earth's spin axis.

The perturbations in (e) would need to be taken into account in analyzing orbits with

observations of very high accuracy.49 We will ignore their effects. The magnitude of

the acceleration resulting from each of the sources listed in (a) through (d) are shown

in Table 1. The values were calculated for a 500 kg, 5 meter spherical satellite at the

northernmost point of a 500 km (altitude) circular orbit, inclined at 28.5 degrees.

Except for the Earth oblateness and aerodynamics calculations, orbit inclinations and
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phase angle differences were ignored. That is, the minimum possible distances

between the satellite and the other bodies were used, assuming the bodies were

located in coplanar orbits with no phase angle difference.

Table 1. Acceleration magnitudes in 500 km Earth orbit.

Source Acceleration, m/sec2  Source Acceleration, m/sec2

Spherical Earth 8.43 Venus 2.24 x 10-7

Earth oblateness 1.05 x 10-2 Mars 1.45 x 10-8

Aerodynamic drag 2.34 x 10-6 Jupiter 3.66 x 10-'

Solar radiation 2.04 x 10-7 Saturn 2.66 x 10-'

Sun (gravity only) 6.13 x 10-3 Uranus 8.72 x 10-10

Moon 3.72 x 10-' Neptune 3.66 x 10-10

Mercury 3.74 x 10- Pluto 1.98 x 10-11

Hence we see that the accelerations due to the Sun, Moon, and planets are

signifi,-antly less than those imposed by the Earth and it's oblateness. Although the

acceleration due to aerodynamic drag, at the reference point, is less than that of the

Moon or Sun, we note that drag is a dissipative force, which continually opposes the

satellite's motion. Conversely, the gravitational forces imposed by the Sun and Moon

are conservative, and their effects will be periodic, varying with the satellite's position

in orbit and the orbit's position in space.

As discussed in the Introduction, the maximum system center of mass altitude

to be included in this project is 500 km. As shown in Figure 1, this choice will limit
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the magnitude of the Sun's acceleration to a level below approximately 60 percent of

the acceleration due to the Earth's oblateness. Hence, only the perturbations due to

aerodynamic drag and the Earth's oblateness are included in this work.

1.0

0.5
Dra

+ S
+ u

0.0 - - - .... . .

0 200 400 Soo Soo 1000
Alttude, km

Figure 1. Ratio of perturbing accelerations to oblateness acceleration.

Gravitational Forces. Gravitational forces acting on a tether system are calculated

assuming the Earth is symmetric about its polar axis. The external gravitational

potential, 0•, of an oblate, spheroidal Earth may be written as

4 r 1- JR Pkk (sinL)1

ak-

where PE is the Earth's gravitational parameter, RE is the Earth's equatorial radius, R

and L are the geocentric altitude and latitude of interest, respectively, the 4k are zonal

harmonics of order zero, and the Pk are Legendre polynomials. Empirically



20

determined values for the Earth's first seven zonal harmonics areS°,51

J2 = 1082.63 x 10-6 J3 = -2.54 x 10-6 J4= -1.61 x 10-6

J5= -0.15 x 10-6 16 = 0.59 x 10-6 J7 = -0.44 x 10-6

Since J 2 is over 400 times the magnitude of any of the other coefficients, and because

(RE /R)k becomes small as k increases, we may neglect all harmonic coefficients

except 2. After expanding the Legendre polynomial (P2), we may write the potential

of mass i in a multimass system as

/• (2)

, =- 1 - J2 (sin Lj) (2)

The acceleration due to gravity acting on mass i is the gradient of the potential

function, and the force due to gravity, F , is then

F -m VOi (3)

Aerodynamic Forces. Aerodynamic forces are calculated using the expression

F = -1 IP I CI A V_ (4)

where p is the atmospheric mass density, V_, sometimes referred to as the "cross-

flow" velocity, is the component of velocity relative to the rotating atmosphere that is
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perpendicular to the applicable tether segment, CD is a drag coefficient, and A is a

reference area.

Atmospheric mass density is modeled using a derived curve fit of the global

and temporal average atmosphere defined by the 1986 COSPAR International

Reference Atmosphere. The atmosphere model is discussed later in this Chapter.

The numerical value for the drag coefficient is determined by: (a) the shape

being modeled, and (b) the flow regime the body is encountering. In this work the

tether end-bodies, the "parent" and/or "sub" satellites, are modeled as spheres, and

tether segments are modeled as right circular cylinders. The reference area, A, is the

circular cross-sectional area for the end-bodies, and the product of length and

diameter for the tether segments.

As explained by Regan"2, there are at least five distinguishable flow regimes a

spacecraft encounters as it "enters" an atmosphere. In order of decreasing altitude

they are:

(a) Free molecular flow

(b) Near free molecular flow

(c) Transition flow

(d) Viscous merged layer flow

(e) Continuum flow

The similarity parameter that identifies the current flow regime is the Knudsen

number, Kn. The Knudsen number is defined as the ratio of the molecular mean free

path, 1., to a characteristic body dimension, d, so that Kn = A /d. A very small Kn

indicates continuum flow conditions, while a very large Kn indicates free molecular

flow conditions.
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The molecular mean free path is the average distance a molecule travels

between collisions with any other molecule. This distance is equal to the ratio of the

mean molecular speed and the mean collision frequency, and may be calculated using53

. (meters)= [ ] (T) = 2.3325083 x 10_5 (T (5)

where R* is the universal gas constant, a is the effective mean collision diameter, NA is

Avogadro's number, T is the ambient temperature in degrees Kelvin, and P is the

ambient pressure in Pascals. Hence, given the temperature and pressure at an

altitude of interest, the mean free path can be calculated, the Knudsen number

formed, qrid the local flow regime identified.

In continuum flow, Newtonian impact theory can be used to derive,

analytically, the drag coefficients for blunt bodies moving at hypersonic speeds.5" The

Newtonian theory assumes the normal momentum of the particles impacting a body's

surface is completely absorbed, while the tangential component is preserved. Hence

the aerodynamic loads result from "impact pressure" alone.

In the free molecular flow regime, molecules reflected or emitted from a body's

surface are assumed to not collide with other molecules. As Harvey55 explains, this

simplifies the solution of the Boltzmann equation, which yields expressions for the

normal and tangential momentum flux to an immersed body's surface. In this type of

flow, the gas-surface interaction and surface temperature are the most significant

parameters, and there are both pressure and shear stress contributions to the

aerodynamic loads and coefficients.' For example, Koppenwallner and Legge have
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shown that shear stress accounts for approximately 25% of the total drag coefficient

of uncooled circular cylinders in hypersonic free molecular flow.57 They also found

that the drag coefficient of cooled cylinders in this type of flow is approximately 20%

less than that of uncooled cylinders."8

Theoretical results which cover the flow regimes between continuum and free

molecular flow do not exist.' Consequently, empirically derived bridging functions,

which provide force coefficients as a function of Knudsen number, are used to link the

two bounding regimes.'

Empirical CD data obtained by Koppenwallner 61 and Legge 62 shows that

uncooled spheres and cylinders experience free molecular flow conditions at Knudsen

numbers above 10. Continuum flow conditions occur for cylinders at Knudsen

numbers below approximately 0.01, and for spheres at Knudsen numbers below

approximately 0.001. For this data, Knudsen numbers were calculated by dividing the

free stream mean free path by the sphere or cylinder diameter. The cylinder drag

coefficients ranged from 2.80 in free molecular flow to 1.24 in continuum flow. The

sphere drag coefficients ranged from 0.92 in continuum flow to 2.70 in free molecular

flow. Curve fits of Koppenwallner and Legge's data are used to model the drag

coefficient variations for spheres and cylinders. The derived equations are presented

in Appendix B. Figures 2 and 3 show the resulting altitude dependence of the drag

coefficients when the CD versus Kn models are used in conjunction with the COSPAR

atmosphere model.
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Figure 2. Altitude variation of 2 mm cylinder drag coefficient.
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Figure 3. Altitude variation of 3 m sphere drag coefficient.
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Environment Model

Atmosphere Model. The atmosphere mass density and molecular mean free path are

modeled using the 1986 COSPAR International Reference Atmosphere.63' This is an

empirical model, based on temperature and composition measurements made by a

variety of satellites, and by incoherent scatter radar.65 This Reference Atmosphere,

published in 1990, includes algorithms for modeling atmosphere properties for any

level of solar and magnetic activity, at any latitude, longitude, year, month, and time

of day of interest. A global and temporal average atmosphere, assuming magnetically

quiet conditions and an average solar flux, is also defined. This "grand mean"

definition was used in this research project. As recommended by The Committee on

Space Research, Part II of the COSPAR model is used for altitudes up to 120 kin,

and Part I is used for altitudes above 120 km.i'

Curve fits for mass density and mean free path, as functions of altitude, were

derived from the COSPAR grand mean data. The curvefit equations are presented in

Appendix A. As shown in Figure 4, the equations for mass density are accurate to

within ± 2% between the altitudes of 50 and 500 kilometers. As shown in Appendix

A, the curvefit mean free path equations are accurate to within ± 3%.
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Figure 4. Atmosphere mass density curvefit error.

Altitude Calculation. The altitude of a mass of interest is calculated by determining

the perpendicular distance between the mass and the Earth's surface. Because the

Earth is not a perfect sphere, this calculation is not a simple matter of differencing the

mass' geocentric altitude and the Earth's equatorial radius. As shown in Figure 5, the

"geodetic altitude" will equal the difference in R, and the Earth's equatorial radius only

at the equator. Hence, Gersten's equation67 is used to calculate the geodetic altitude,

H, where

H = R-.aE + a aEeEsin [(1 + E) + sin2d(le2 -EJ] (6)

In this equation, aE and eE are the Earth's equatorial radius and eccentricity, respec-

tively, Ri is the mass' geocentric altitude, and qS is the mass' geocentric latitude. The
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factor L is aEeE' / Ri . The numerical values for the constants are68 aE = 6378.137

km, and eE = 0.08181922.

Md,

aE

Figure 5. Altitude above an oblate Earth.

Atmosphere Rotation. Following the approach used in many models, the atmosphere

is assumed to be rotating, at all altitudes, at the same rate as the solid Earth.' Hence

the velocity of the atmosphere at any location is calculated from V = (a x RDabn -E '

where --E is the Earth's angular velocity. The combination of the altitude calculation

method presented earlier, and the atmosphere rotation model described here, means

the model atmosphere hIA L-e same shape as an ellipsoidal Earth, and rotates with it.

Multibody Model

As described by Kane7", the motions of a spacecraft may be analyzed "... by

considering a set of particles placed at the joints of the structure, each particle having

a mass equal to one-half the sum of the masses of all truss members meeting at the
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joint and the particles being connected to each other with massless springs whose

stiffness reflect the elastic properties of the truss members." This is the so-called

"lumped-mass" approach to modeling a dynamical system. The dynamical model

developed here consists of a non-conductive, extensible, lumped-mass tether, connect-

ing end-bodies modeled as spheres.

System Description. Using the lumped-mass technique, the mass of a tether can be

represented mathematically by dividing its length into n equal length segments, and

assuming the mass of each segment is halved into point masses at the segment's ends.

Hence, the mass at each segment intersection, referred to here as a "bead", equals the

mass of one tether segment. The end-masses, Mo and m., are equal to the "parent"

satellite mass plus one-half of one bead mass, and the "subsatellite" mass plus one-half

of one bead mass, respectively.

The mathematical description of the system's dynamics is designed to enhance,

as much as possible, the accuracy of results obtained via numerical integration. As

shown in Figure 6, the inertial position vector to the parent satellite (R_) is referenced

to the origin of the Geocentric Equatorial Coordinate (GEC) system. It is represent-

ed in spherical coordinates (Ro , A0 , 0) to reduce the magnitude change occurring in

each variable during numerical integration. The relative position vectors of the

remaining masses define the position of each mass relative to its neighbors, in

(Cartesian) GEC coordinates. This relative representation reduces the magnitude of

the variables involved, thus reducing the effect of roundoff errors on the numerical

solution. It also facilitates straightforward specification of system initial conditions.
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GEC

Figure 6. Tethered system lumped-mass model.

System dynamics are described by the state equation

_X.F_ 
(7)

where the state vector for the system is

x = [Ro o0 0o A 4 ko X1 y1 zi 1 Y1 II ... x... yn z n I ]T (8)

The inertial position of the parent satellite is

R= [R cos,(4)cos ( 0)] + [ Rcos(00)sin ( 0)] + [ Rsin (4÷]k (9)

and the parent's inertial velocity and acceleration vectors are obtained by successively

differentiating this vector with respect to time, holding the unit vectors I, j_,andk

constant. The inertial position of mass i is

R h Rt o r (10)

and the position of mass i relative to mass i-1 is
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r =x.A +y.j +z.K (11)

The inertial velocity and acceleration of mass i are calculated by taking successive time

derivatives of Eq. (10). Since the relative position vectors r are written in the inertial

frame, there are no vector cross products with which to contend in the kinematic

velocity and acceleration expressions for Rj. This is a distinct advantage over writing

descriptions in a rotating frame located at some point in the system.

Equations of Motion. To numerically integrate the state equations (Eq. (7)), we

require expressions for the time derivatives of the velocity components of the state

vector (Eq. (8)). The acceleration of mass i relative to mass i-1, obtained by

differentiating and rearranging Eq. (10), is

i-1"_r =R= - .R(12)

Using Newton's Second Law to substitute forces and masses for unknown

accelerations, Eq. (12) becomes

• -, E FF i- (13)
M. m0  j-1

where F and F. are forces acting on masses i and 0, respectively. This equation

describes the motion of mass i relative to mass i-1, and is used to update the state

vector's relative velocity terms incrementally in time. The forces included in the

summations are aerodynamic forces, forces due to gravity, and tension forces occur-

ring in the elastic connections with neighboring beads.
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Expressions for Rog A.0 and qo are most easily derived in a rotating coordinate

frame attached to MO, the parent mass. As shown in Figure 7, this coordinate system

is defined with mutually orthogonal unit vectors in the R, A and _ directions. The

system's angular velocity, (, is

-- = o - 0e-- 1(14)

where

S= sin4(o R + cos 0o• (15)

so that the frame's angular velocity, written in rotating coordinates, is

(a= iosin o0 - o R •'oCA+ i 0 cose-- (16)

u .efR

ZGEC

"GECE

Figure 7. Rotating coordinate frame.
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The time rate of change of the angular velocity is

__6 = s 0_K -4'• -ý 0 (cxe) (17)

When written completely in rotating frame components, Eq. (17) becomes

6= (iosino0 + oiA cosoo)4)R - ýoi + (ýocosq6o - 0•~osin~ko)e_0 (18)

The parent's inertial position, written in the rotating frame, is

SR= Roi (19)

The parent's inertial velocity is

R) (20)
0 :• + Ro 0 0CSoO + ROMo0

and its inertial acceleration is

ho= RK , + 2 Ao(c(Xa + Ro(bXe + (a x (21)
-0 -R + 0  RJ O- -R - (-R/J

After expanding the vector products and grouping like terms, Eq. (21) becomes

R - • o• 20o - Ro 00 2)

* (2A,0 o cSos° 0 - 2Ro ioosin460 + ROXocos 0o)0) (22)

+ (2oho + Roo+ R + o' sino cos6 0))

This is the parent's inertial acceleration, expressed in the rotating coordinate system.

Using Newton's Second Law, we may relate this expression to the sum of the forces

acting on Mo, so that
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S- EF 0(23)
-0 MO

The forces included in the summation are the aerodynamic forces acting on the parent

satellite and one-half of the immediately adjacent tether segment, the force due to

gravity acting on mass M0, and the tension force occurring in the elastic connection

with the first bead. Using Eqs. (22) and (23), we may now solve explicitly for the

desired derivatives:

R = FOR + Ro 2 C 460 + Ro0,• (24)
0 V_ 0 s2

0  R 04

0 MFco - 2/A°L° + 2iýO0 tan.o, (25)
0 0 cosk40 R0

_o = FO _ j2 sin 00cosak 0 - 2Ro 00 (26)

In these equations, the subscripts on F0 indicate the applicable force vector compo-

nent.

Aerodynamic Forces. Aerodynamic forces are calculated as described earlier.

Forces applied to the end-masses are the resultants of both the drag of the end-body

and the drag on one-half of the immediately adjacent tether segment. Forces applied

to the tether beads are the resultants of drag forces acting on the tether V2 segments

immediately "above" and "below" the bead. As shown in Figure 8, the aerodynamic
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forces will have components along both the drag and lift directions (ie., parallel and

perpendicular to V_) for any tether segment that is not perpendicular to V.

• -" ero 2 Eaerol . .- \o

f2

M2

Figure 8. Aerodynamic forces geometry.

The reference cross-sectional area for each segment (length x diameter) will

vary as it's length changes, due to elasticity effects. Poisson's ratio, v, is the ratio of

the strain in the lateral direction to the strain in the axial direction.71 Using this

material property, the reduced diameter, d, of a stretched segment is calculated from

d = Vd0(10  do0 (27)l0

where do is the unstrained (original) segment diameter, and 10 and I are the original

and stretched segment lengths, respectively. The diameter is assumed to be equal to

it's original value for segments that are equal to or less than their unstretched lengths.
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Tension Forces. Tension forces are calculated by modeling each tether segment as a

massless, linearly elastic spring. The equivalent spring constant, k,, for the entire

tether length is

k = EA = Eird2  (28)

"e9 L 4L

where E is the tether modulus of elasticity, A is the (circular) tether cross-sectional

area, d is the tether diameter, and L is the total tether length. The equivalent spring

constant for each tether segment is nk,, where n is the total number of tether

segments being modeled. The total tension force acting on mass i is determined by

the elongation of the springs connecting the mass to its neighbors. The springs are

assumed to exert forces in tension, but not in compression. The tension force on mass

i is calculated from

F t-i = nk,•. [(stretch i.1) • - (stretch ) ] (29)

where -ril is a unit vector from mass i to mass i+1, and F is a unit vector from mass

i-1 to mass i. The scalar "stretch" terms are the elongations of the corresponding

tether segments. These terms are always greater than or equal to zero. If the current

distance between mass i and one of its neighbors is less than the original segment

length, the stretch term is set equal to zero, and there is no spring force applied along

that connection.

Numerical Integration. The state equations are numerically integrated using a Runge-

Kutta-Gil fourth-order method.72 Eqs. (13), (24), (25) and (26) provide the means by
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which to calculate the time derivatives of the state vector's velocity terms at each

integration time step. Calculations at each time step begin with the parent mass and

proceed sequentially to mass n, the subsatellite.

Orbital Element Propagation Model

The model described in the previous section involves direct numerical integra-

tion of the equations of motion, including all perturbing forces of interest. In the

vernacular of perturbation techniques, it is classified as a "special" perturbation

technique, and is sometimes referred to as Cowell's Method.73

Unfortunately, the method's simplicity is somewhat offset by the time required

to simulate a tethered system's orbital decay. A similar, but more efficient technique,

which is often used for single-mass satellite orbit simulations, is the "variation of

parameters" method. John Bernoulli first used this method in 1697 to solve a linear,

first-order, non-homogenous differential equation with non-constant coefficients.7'

Leonhard Euler received prizes from the French Academy in 1748 and 1752 for his

use of the method to study the perturbations of Jupiter and Saturn, and J. L.

Lagrange made further advances on the subject in 1766.7' In 1782, Lagrange, for the

first time, completely developed the method in a memoir on the perturbations of

comets moving in elliptical orbits.76 As a result, orbital element variational equations

derived using this method are usually referred to as "Lagrange's Planetary Equations".

The objective of the method is to describe how a selected set of orbital

elements varies with time due to perturbations - non-two body forces acting on the
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system. This is done by deriving analytical expressions for the time rates of change of

the elements in terms of the perturbations of interest. The expressions are then

numerically integrated to find the values of the elements at future times.

In this section, we will summarize the derivation of Lagrange's Planetary

Equations, discuss the derivation of, and present, a set of non-singular propagation

equations, and, finally, describe the unique perturbations used in the equations to

propagate the orbital elements of a tethered system's center of mass. Many of the

equations presented are available in various published documents, and are included

here only for completeness. However, the application of these techniques to a

tethered system's orbital evolution is unique to this work.

Lagrange's Planetary Equations. 77.8 The orbital equation of motion for a perturbed

small satellite moving under the influence of a more massive central body is

r 1T
d 2r + E r = (30)

d r3- ar

where r is the satellite's position relative to the central body, Pi is the body's

gravitational parameter (GM), and R is a potential or "disturbing" function. This

formulation requires that the perturbing forces be conservative, neither adding energy

nor deleting it from the system, which is an obvious limitation. Although Lagrange

derived the variational equations with this restriction, the problem was revisited by

Gauss in 1814. He modified the equations to account for an arbitrary perturbing

force. In this case, the equation of motion is
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d2r + r (31)
dt 2  r 3 - -d

where a is the disturbing acceleration. This second-order equation may be written as

a system of two first-order equations, with

dr = V and dV +--r =a

dtdtd r3 - (

where V is the satellite's velocity relative to the central body. If there were no

disturbing acceleration, the solution to these equations would be

r = r(a,t) and V dr = _r(a-,t) (33)

-- rtdt at

where a is a six-dimensional vector containing the (constant) orbital elements. This is

the Keplerian, two-body situation.

The objective of Lagrange's derivation is to reformulate Eqs. (32) into equa-

tions for d- while maintaining the form and meaning of Eqs. (33). In so doing, we
dt

will be able to compute the instantaneous position and velocity of the perturbed

satellite using the well-known Keplerian formulae.

In perturbed motion a is not constant, and the total time derivative of r is

dr = ar(a,t) . r(a-,t) da (34)

"dt at aa dt

Comparing this equation to the second of Eqs. (33), we see that we must require

ar = 0 (35)
0a dt
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Imposing this "condition of osculation" and differentiating once flior, we obtain

d2r dV aV aVda (36)

dt dt at aa dt

Substituting this expression into the equation of motion yields

a2r • _ aV da--- _+ + - =a (7at2 r3 - aa dt-d

and we note that, by design,

a2r + r = 0 (38)

at r3 -

Hence, we must also require

aV da
-a (39)

Eqs. (35) and (39) are the six scalar differential equations we seek. They are

equivalent to the original equation of motion, and must be satisfied by the vector of

perturbed orbital elements, a(t). The equations may now be combined into a more

compact form.

The 6x6 skew-symmetric Lagrange matrix, L is formed by

aIT av I ar (40)

and the matrix equation combining Eqs. (35) and (39) is

da Iar (41)LLN a
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The elements of L called the "Lagrangian brackets", ar.- calculated from

ar av ar av[Li,LJ] = a• o• a• 8 (42)

where the 4 j bracket is the matrix elemeit in row i, column j. Because of the skew-

symmetry of L, there are only 15 distinct brackets to evaluate. Only six of these are

non-zero. After the brackets are evaluated, and the right hand side of Eq. (41) is

da
expanded, the elements of the vector - can be determined by algebraic elimination.

dt

Lagrange's Planetary Equations, in Gauss' form, are listed below. The

disturbing acceleration must be expressed in an osculating coordinate system. This

dextral, orthogonal, Cartesian system has unit vectors in the radial, transverse, and

(orbit) normal directions. The unit vector •i points in the direction of the satellite

from the central body's center, ! is perpendicular to the orbit plane, and elies in

the orbit plane, completing the unit vector triad, making an angle less than 900 with

the satellite's velocity vector. The orbital elements used here are a classical set: a,

the semi-major axis, e, the eccentricity, 4 the inclination, A the longitude of the

ascending node, &ý the argument of perigee, and v, the true anomaly. In these

equations, the subscripts on ad indicate the applicable component of the disturbing

acceleration. These terms should not be confused with a, the symbol for the length of

the semi-major axis. The "orbit parameter" (a(1-e2)) is P, h is the satellite's specific

(orbital) angular momentum, and U is the argument of latitude, which is defined as

the sum of the argument of perigee and the true anomaly.
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da - 2a e sinvad + EdU (43)dt a"rad

de= psinv ad + [(p + r)cosv + re]adf (44)

di r cos U a (45)
"d't h ada

Al r sin U-ad, (46)
h [isini h

"d- = I -p cosv ad, + ( + r)sinv adu - rsinU i ad, (47)

dti Th I~ ] (48)i

dv = + Ip cosv ad, - (p + r)sinv aa(

dt r2  eh L -( Im d

Eguinoctial Elements and Non-Singular Propagation Equations. Unfortunately, Eqs.

(46) - (48), which model the time rates of change of fl, (a, and v, contain terms

including e and/or sin i in their denominators. Consequently, singularities occur when

i and/or e are zero, and the calculated rates of change of [1, wo, and v for orbits of low

inclination and/or small eccentricity will be large despite the fact that the disturbing

accelerations may be small.

To avoid this problem, the classical elements may be combined in a way that

eliminates the singularities. As shown by Battin,79 a more reliable set of propagation

equations results if five new elements are defined:
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P1 -esin P-A2 - e cosco

Q, - tan 1 sin fl Q2 - tan-1 cosfl
2 2

Il- +M

In this new set of elements, Z), the longitude of perigee, is il + (o; M is the mean

anomaly; and 1 is the mean longitude. The semi-major axis, a, is the sixth element in

the set. These elements are non-singular for all orbits except those with i = 180".

Using the mean longitude to update the satellite's position requires that

Kepler's equation be solved after each time step. This requirement can be eliminated

by propagating the value for the true longitude, L - + + v, rather than 1, the mean

dfi dw dv
longitude. Combining the expressions for --W-, --W-, and T, we obtain

dL = h + r sinUtan adh (49)
dt P h

Substituting equinoctial elements, this expression is

dL - P2(1 + P1sinL + P2cosL) 2 + h Q2sinL - Q1cosL a (50)
"T = h3 1 + P1 sinL + P2cosL dh

The remaining propagation equations are

da 2a2+

-'= (P2 sinL - PcosL)ad, + f adU (51)Tt 17r
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dP1  r cosLa + + (1 + E sinL adU- PQcos
dt h r [d"1 r -I 2Q sL- Q2sInL)adh

dP2  r sinLad + [p2 + + E cosL]adU + P,(Q1 cosL - Q2sinL)adj (53)

dQj = r (1 +2Q +Q )sinLad_ , (54)

dQ2  r (+Q + Q2)cosLad (55)
-dt-_i-1 2 d

where

h =nab, b a 1 -P2 -P2n

r==
P h 2 rp

Pa 1 + PlsinL + P 2cosL

Disturbing Acceleration. The propagation equations listed above are used to update

the orbital elements of the tethered system's center of mass. Perturbations of the

motion arise from three sources:

(a) Aerodynamic forces on the tether and end-bodies

(b) Gravitational forces due to Earth oblateness

(c) Gravitational forces due to the physical distribution of the

system's mass.

Thus, the perturbing force, F_., may be calculated by differencing the "actual"

aerodynamic and gravitational forces acting on each mass in the lumped-mass system
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with the two-body gravitational force that would result if all the system's mass was

actually concentrated at the center of mass location. In Eq. (56), F and F are

the gravitational and aerodynamic forces acting on mass i. They are calculated as

described in the Multibody Model section of this Chapter.

n

F F +F - F (56)
_P i -0o m _ Fv

The two-body gravitational force acting on the system center of mass, F , is

calculated from

F =M V4, (57)

where

n

W- and Mo = ' M (58)

Finally, the disturbing acceleration, a~d, is determined by dividing F by the total system

mass, M,.

It is important to note that only the orbital elements for the system's center of

mass are propagated forward in time. Hence, this approach will not yield current

position and velocity information for all system constituents, which makes calculation

of the "actual" aerodynamic and gravitational forces impossible. As discussed in the

Introduction, we are interested in studying the orbital evolution of tethered systems

released when they are aligned along the local vertical, and orbiting as a rigid rod. In

an earlier study, Bergamaschi and Moranam found that the in-plane libration angle

(i.e., the angle between a straight line approximation for the tether and the local
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vertical) of a freely-decaying tether remained very small after it was released from

these initial conditions. Hence, for this part of the analysis, we will assume the tether

is inextensible and remains aligned along the local vertical during its entire lifetime.

Assuming the tether is inextensible means the position of each mass in the

system, relative to the system center of mass, is known for all time. Hence the inertial

position of mass i is

R =R +r 0:5_i_5n (59)"-/ --an -reii (

where R_, is the inertial position of the system's center of mass, and r is the

position of mass i relative to the system's center of mass. The inertial velocity of mass

i is calculated from

+ =R +1 Oi:_n (60)• --an i'W

where

w X× r, O i:_n (61)

In Eq. (61), the fact that the system is assumed to orbit as a rigid rod is exploited. In

this situation there is no relative velocity between any of the masses and the system's

center of mass. Hence the "apparent" inertial relative velocity is due only to the

inertial motion of a reference frame attached to the system. Correspondingly, X is the

rotation rate of an osculating coordinate system located at the system's center of

mass.
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Element Propagation and Coordinate Transformation. An Euler numerical integra-

tion technique is used to update the orbital elements, as shown in Eq. (62), where X

represents any one of the equinoctial elements.

X(t + t) = x(t) + (ft' & (62)

Figure 9 shows the physical relationship between the equinoctial (, ,_

osculating (e, et' e) and GEC (XGEc, YGEC, ZGEd coordinate systems. The funda-

mental plane of the equinoctial coordinate system coincides with the orbit plane.

ZOEC

Figure 9. Equinoctial, Osculating, and GEC coordinate systems.
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Consequently, the position of the center of mass can be written as

RcM = (rcosL)L + (rsinL), (63)

where r is calculated using the current equinoctial elements, as shown on page 43

(following Eq. (55)). The inertial velocity of the center of mass is

AcM = (fcosL - rLL sinL)! + (fsinL + rLL cosL)j (64)

After substituting equinoctial element expressions for rL, t, and L, we have8'

A = h [(_-P - sinL)L + (P2 + cosL)j] (65)

The center of mass' inertial position and velocity vectors may be expressed in

GEC coordinates by performing the following transformations:

(a) a positive rotation about iv- through the angle fl,

(b) a negative rotation about n (ascending node vector) through the
inclination angle, i, and

(c) a negative rotation about k (ZGEc) through the angle fl.

Hence, any vector expressed in equinoctial coordinates may be transformed into GEC

coordinates with the operation

cos il -sin fl 0 1 0 0 cos fi sin fi 0
B G = sin l cosfl 0 0 cosi -sini -sinti cosfi 0 B (66)

0 0 10sini cosi[ 0 0 1
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Combining the rotation matrices and writing the result in terms of equinoctial

elements yields"2

1l-Q2+Q2 2Q1Q2  2Q1

B2_ 2 -2 B (67)
B GEC 2 2 2QIQ2 l+Q1-a2 Q22 -BW1+Q+Q2 Q, 2 1_Q2 Q_Q 2Q2 12



ARTIFICIAL NEURAL NETWORKS

As discussed in the Introduction, artificial neural networks (ANNs) are used in

this research project to represent the mapping between several independent variables

and the orbital lifetimes of tethered systems. After an overview and introduction to

feed-forward network concepts and architecture, we will describe the "standard" error

backpropagation training algorithm, derive a training algorithm specifically designed to

train feed-forward networks to represent widely-spread real-valued data, demonstrate

the new algorithm's performance, and describe and test a hybrid training approach.

Overview and Introduction

Basic Concepts. Artificial neural networks are not programmed; rather, they "learn"

by example. During supervised learning, or "training", a network is presented with a

series of input vectors together with corresponding desired output vectors. In

response to differences between the network's output(s) and the desired output(s), the

network adjusts the values of its internal parameters. Training continues until the

network produces the correct output(s) for each input vector in the training set. This

process mirrors an important task of the central nervous system: the ability to learn

reactions and useful behaviors that permit survival in an often hostile environment.

49
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Networks that provide an optimal reaction or answer to an external stimulus are

sometimes referred to as "cybernetic" networks.83

The most-studied and popular class of cybernetic networks are the so-called

"feed-forward, layered" neural networks. In these networks, information flows along a

series of one-way connections between several distinct layers of neurons. At one end

is the input layer, which receives external "stimuli", and at the other end is an output

layer, which produces, or causes, a desired "reaction". There may be one or more

layers of neurons between the input and output layers. These are called "hidden"

layers, because they have no direct interface with the "outside world". Rather, they

receive inputs from the preceding layer and pass their outputs to the following layer.

Figure 10 shows, schematically, the flow of information from inputs to outputs in a

network with a single hidden layer. Note that there are no connections between

neurons in the same layer, and each layer receives inputs only from the preceding

layer.

Each neuron in a network applies a "transfer function" to its input, yielding a

result that is passed to each neuron in the following layer. Each connection between

neurons has an associated "weight", and each neuron in the hidden and output layers

has an associated "bias". These variables are adjusted during the training process, in a

manner designed to minimize the error between the desired and actual output

value(s). In the following sections, we define a standard terminology, discuss the

transfer functions used in this research project, and present a detailed description of
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the network structure used in modeling the relationship between the various

independent variables and the orbital lifetime of tethered systems.

Hidden

Figure 10. Feed-forward network architecture.

Terminology. In this work, input, to any neuron in a network, will be represented by

X,, where a is the neuron's "number" in its layer - 1,2,3,4, etc. Output from the

neuron is denoted by Y,. The weight on a connection between neurons is denoted by

W.,, where j9 is the number of the "transmitting" neuron in the preceding layer, and

a is the number of the "receiving" neuron. The bias on hidden and output neurons is

denoted by va, where, as before, a indicates the neuron's number in its layer. The

transfer function applied by a neuron to its input is represented by G(X,).

When writing mathematical formulae describing a network's operation, we use

the subscript 'T" to refer to the input layer, the subscript 'f' to reference the hidden
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layer, and the subscript "k" to denote the output layer. (If more than one hidden layer

is involved we will use numerical subscripts on 'J" to indicate the layer's number.)

Hence, for example, the values of the input vector are X,, the outputs from the input

layer are Yj, the inputs to the (first) hidden layer are XA, and the hidden layer's outputs

are Yj.

Transfer Functions. As shown in Figure 11, each neuron in a hidden layer sums the

weighted inputs arriving from neurons in the preceding layer, subtracts a bias value,

applies a transfer function to the result, and passes the final result, along weighted

connections, to each neuron in the next layer. Neurons in the input layer merely

apply a tra" -er function to a single (external) input, and send the result along

weighted connections to the first hidden layer. Neurons in the output layer operate as

shown in Figure 11, but provide only a single result, Yk, to the "outside world".

Figure 11. Hidden layer neuron operation.
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The transfer function may perform any desired mathematical operation on a

neuron's input. Possible candidates include linear, linear-threshold, sigmoid,

trigonometric, and even Gaussian functions. The fundamental requirement for

employing the error backpropagation training algorithm is that the function and its

derivative be monotonic and continuous. Because there are certain mappings which

are not "linear separable", preference is usually given to using nonlinear transfer

functions. The most commonly used function is the sigmoidal "logistic function",

Y - 1x (68)1 +e-

This function is one in which the output varies smoothly with the input. The

function's derivative is also smooth and continuous. The derivative is

dY e ex = [ I]I( e-x ] = -~ _y (69)
dX + e-x) 2  I1+ e-xJ1 +e-xJ

Figure 12 shows that the function's output varies in magnitude between zero and one,

the so-called "saturation levels". The function's slope is largest when X is between - 1

and 1.

Applying a weight, W, to the function's result has the effect shown in

Figure 13. A positive weight, greater than unity, "stretches" the function along the Y

axis, increasing its slope and maximum magnitude. A positive weight, less than unity,

compresses the function along Y, reducing its slope and maximum magnitude.

Negative weights produce the mirror image of these results about the X axis. The
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Figure 12. Logistic function and its derivative.
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Figure 13. The effect of multiplicative weights on the logistic function.
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characteristics illustrated in Figure 13 demonstrate the effect of modifying a neuron's

output with a multiplicative weight. Hence, we see that by adjusting the connection

weights, during training, a network can control the saturation levels and response

characteristics of its many neurons.

As shown in Figure 14, subtracting a bias, v, from the sigmoid's argument

translates the result along the X axis, without altering the function's slope or

magnitude. Positive biases shift the result to the left, and negative biases shift it to

the right. We observe that the bias actually serves as somewhat of a "threshold"

value, determining the "activation level" at which a neuron's output will begin to

transition from zero to the upper saturation level.

1.0

0.9

0.8 v= -5

0.7

0.6
> 0.5

0.4

0.3

0.2 v= 5
0.1

-15 -10 -5 C 5 10 15
x

Figure 14. The effect of a subtracted bias on the logistic function.
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For a neuron in a hidden or output layer, the sum of the weighted inputs from

the preceding layer will be modified by subtracting a bias. The magnitudes of the

summation and bias will then determine the output from a sigmoidal (logistic) neuron.

A summation result much larger, or, much smaller, than the bias value will yield an

output value of one or zero, depending on the signs of the summation and bias, while

a summation result nearly equal to the bias value will yield an output between the

saturation values. We therefore observe that by learning to employ various bias

values, a network can control which neurons are "active", and which are "saturated", at

various locations in a data set.

A linear transfer function, Y, = Xa, is also sometimes used for neurons in the

input and/or output layers. Applying a weight to this function changes the slope of

the resulting line, and subtracting a bias from the function's argument translates the

line along the X axis.

Selected Network Structure. Recently, Cybenko& showed that finite linear

combinations of a single sigmoidal function, such as the logistic function described

earlier, can approximate, with any desired accuracy, any arbitrary function. This

means that, theoretically, a multilayer feed-forward artificial neural network, with just

one hidden layer of sigmoidal neurons, can be used to represent the mapping between

the various independent variables and the orbital lifetime of tethered systems. Of

course, a suitable number of neurons must be included in the hidden layer, and the

correct biases and interconnection weights must be found. The network structure

suggested by Cybenko's result is attractive from two perspectives: First, as mentioned
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in the Introduction, it is known that "broad" networks, with few hidden layers, are

easier to train than "narrow" networks with many layers; second, restricting our

networks to just three layers of neurons -- input-hidden-output -- will simplify their

use by others. This is a significant consideration, as one of the objectives of this

research project is to provide computational tools, in the form of trained ANNs, which

may be used by others to quickly obtain an approximation of the orbital lifetime of a

system of interest.

The size of the input and output layers will be dictated by the problem being

solved. For example, if our desired result is an orbital lifetime estimate, we require

only one output neuron. The number of neurons in the input layer will be dictated by

the number of independent variables. The number of neurons in the hidden layer will

determine the accuracy of the mapping, and will be determined experimentally, as

discussed previously.

As shown in Figure 15, neurons in the input and output layers will apply the

linear transfer function discussed earlier, and hidden layer neurons will apply the

logistic function. Hence, we will be using an artificial neural network to implement

Cybenko's theorem. The mathematical representation of the network's output is

w
Yk jk V k (70)

1i (
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Xi

Yi =Xi

•X =•ijy.v"

Yj (1 + exp(-X,))"

Xk = ýWjkYj- Vk

SYk = Xkc

Figure 15. Selected feed-forward network structure.

The Error Backpropagation Network Training Algorithm

According to Simpson,85 the error backpropagation training algorithm was

independently derived by various individuals and groups, in wide-ranging disciplines,

beginning in 1967. In 1986, a group of cognitive and computer scientists --

Rumelhart, Hinton, and Williams' -- publicized their derivation of backpropagation

training, and demonstrated some of its power and potential. The scientific community

took notice, and widespread interest in ANN capabilities and methods has flourished

ever since. Consequently, the group led by Rumelhart is usually credited with deriving
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the algorithm, although they actually only restated it and demonstrated its usefulness.

In any case, the 1986 "discovery" of the backpropagation training algorithm for feed-

forward networks is directly responsible for the state of the art today.

The Algorithm. The "standard" error backpropagation algorithm adjusts the weights

and biases in a network to minimize the cost function

E= EE •(Y• -dý d". )2 (71)

where E represents the total error in a network's performance, Y is the resultant value

provided by an output neuron, d is its desired value, c is an index over all training

cases presented to the network, and k, as before, is an index over all output units.

The parameter adjustment procedure is derived by computing the change in

the cost function produced by changes in twe network's weights and biases. The

concept is simple: find the gradient vector of the cost function in parameter space

(i.e., in terms of the network weights and biases), and adjust the parameters to reduce

the cost. Since the gradient vector points in the direction of the cost function's

maximum increase, we move in the opposite direction, to minimize the cost, and hence

the error in the network's performance.

The gradient of E, in parameter space, is calculated using the chain rule of

differential calculus. For the output layer, assuming linear output neurons,

a- = aE aXk aE aYk aXk -(Yk -dk) Y" (72)

af aXk awk- 1 axkawk C f d)
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a8 aE aXk aE aYI aXk
=:- dk - Yk (73)

C1 V 8 Xk aVk -y aX aV =k~ Y

where we recall that the input to an output neuron is

Xk = ('ýk ) - Vk (74)
J

For sigmnoidal (logistic function) hidden layer neurons,

8E aE axk aY a a E ark a ax, a Y ax
aWl ax • a w, ai Y• ax•- aYkaxaWj (75)

aE -aE aXkaY Mx aE cik aXkaY Mx
aý, aXk ay ax ax. av'aX ' oly ax, a( 76

j j j k k j (76)

aj d we recall that the input to a hidden layer neuron is

X= (W.X) - v. (77)
1

We note that the factor Yj/l-Y), the derivative of the logistic function, appears

in Eqs. (75) and (76). If the hidden layer neurons are initially saturated, due to large

magnitude inputs, this factcr will equal zero, and no learning will occur. If the

magnitudes of the input vector components are large, this problem may possibly be

avoided by using large initial bias values on the hidden neurons, and/or by assigning

small initial connection weights between the input and hidden layers. A more reliable

approach is to map all input data to the interval (0,1), or perhaps (-1,1), the "sensitive"
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range of sigmoidal (logistic function) neurons, and use random initial weights and

biases between -1 and 1. These steps provide a reasonable chance for learning to

occur.

Since the gradient vector indicates the direction of maximum increase in the

cost function, as mentioned earlier, moving in the opposite direction should decrease

the total error. Hence, the parameters are adjusted using the relation

AX(t) = -E a- (t) +aAX(t-1) (78)ax

where X represents either a weight or bias, e is the "learning rate", and a is a

"momentum" term that specifies the extent of the influence of the previous change on

the current adjustment.

The procedure for network training is to take a small "step" in the direction of

maximum decrease of the cost function, by adjusting the weights and biases according

to Eq. (78). After a step is taken, we reevaluate the cost function and make another

adjustment, hoping to eventually reach a global, or at least acceptable, minimum of

the cost function. The "optimal" values for the learning rate and momentum will vary

with the topology of the error surface being traversed. An adaptive algorithm for

determining L and a is presented later in this Chapter.

The standard backpropagation training approach has been used very

successfully in various applications. Unfortunately, it has some difficulty in training

networks to represent real-valued functions that span several orders of magnitude,

precisely the situation we will encounter with orbital lifetime data for tethered systems.
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Problems with the standard approach are discussed in the next section, and an

alternative algorithm is derived.

The Minimum Percent Error Backpropagation Training Algorithm

Problem Description. Parameter adjustments are made in the standard

backpropagation training algorithm as a result of the magnitude of the (squared) error

between the desired and actual outputs. Consequently, a network trained to any

chosen accuracy level is likely to produce outputs with percent errors that are larger at

small magnitude output values than at large magnitude output values. This occurs

because a large percent error at a small value will often be smaller in magnitude than

a small percent error at a large value. Thus, a network may approximate large

function values quite well, but miss producing the desired output at small values by

large percentages.

If the desired output data spans more than one or two orders of magnitude,

the network will need to be trained to a very small error level to guarantee close

approximation of the smallest values. Reaching an extremely small error level when

training a network to represent widely-spread, real-valued data has been shown to be

a difficult, if not impossible, task.87 In such a situation, we sometimes find that a

network trained to a very small error level has "memorized" the training data rather

than learned the boundaries and trends necessary for effective generalization. One

possible solution is to map the output data into a smaller interval.
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For example, if a network uses a linear output neuron to represent data

ranging in magnitude from 0.5 to 500, we may map the data to the interval (0, 10).

(If the output neuron is sigmoidal, the data would need to be mapped into the active

range of the sigmoidal function used.) As shown in Eq. (79), the mapping is

accomplished by subtracting 0.5 from each desired output data value, and dividing the

result by 49.95, one-tenth the range of the original data.

d ,d - 0.5 (79)
49.95

Converting the scaled network output back to the original data range requires the

operation

Y = 49.95 Y + 0.5 (80)

Hence we see that an unsealed result of 0.5 requires a (scaled) network output of 0.0.

Any error will be magnified nearly 50 times. For example, an output of only 0.01,

rather than 0.0, would cause a 99.9 percent error in the corrected result (0.9995 vs.

0.5). By comparison, an unsealed result of 500 requires a network output of 10, and

an actual output of 10.01 translates to only a 0.1 percent error (500.4995 vs. 500).

Clearly, what is needed is some means of weighting the back-propagated error to

account for differences in output data magnitude. Such an algorithm is derived in the

next section.

Minimum Percent Error Backpropagation Trainin . As illustrated in the previous

section, the backpropagation algorithm, in its "standard" form, is not well suited for
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network training in the case of widely-spread, real-valued output data. Rather than

seeking a minimum of the total output error, we can instead minimize the sum of the

percent errors occurring at output. This will put the network's performance at each

data point on an equal basis, rather than skewing the trained network's accuracy in

favor of the largest magnitude data points.

Let E' be the new cost function to be minimized, where

Eld - (81)

This is the sum of squares of the percent errors occurring at output, including the

contributions of all output units and data points. Assuming linear output neurons and

sigmoidal (logistic function) hidden layer neurons, we may find the parameter space

components of the cost function's gradient using the chain rule:

ar _aE'ox•_ a'r x _ ,___ 1•-d,•
aE' aE' aXk _ aE'Yk aX, (82)

a 1ý* jk ayk ak j;k d k 2J

aE' a E' aXk a E' aY, aXk _ dk - Yk (83)

ak ak ak ak ak ak dk

aE' EaE' axlk ay, a x. E aE' ay ak ay x.
aw ký a- k ~ a k aYJa aXa W4

(84)
- ~ýk [Y ( -d w](1 X
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a~l a xk ayax ( aE'acYkaXk a Yax.
a] k k F I iT F k l k a k ayIa a,.

(85)

= d 2~ (d-Y ýw* I Yi (

We note that the derivative of the logistic function appears in the equations

describing the dependence of changes in E' on changes in Wij and vj. Hence, steps

must be taken to avoid initial saturation of the hidden layer neurons, as discussed

earlier. We also observe that these equations have an obvious singularity for a

desired output value of zero, because dk appears in each denominator. The singularity

may be avoided by substituting for zero a very small desired output value.

The network parameters are adjusted during training using Eq. (78). Training

may continue until the sum of the percent errors is below a desired tolerance, the

maximum percent error at every output data point is less than some desired limit, or

both. An adaptive algorithm to adjust the learning and momentum rates, and a

demonstration of the Minimum Percent Error (MPE) training algorithm, are

presented in the following sections.

Network Training Procedures

"Optimal" Learning and Momentum Rates. The training process may be visualized in

topographical terms. The cost function is represented as a surface in a (C + 1)

dimension space, where 4 is the number of adjustable network parameters (i.e., the

weights and biases). The objective of network training is to reach a low elevation
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point, on the "error surface", where the cost function is a minimum. The surface is

traversed in steps, whose sizes are dictated by the values of the learning rate, e, and

the momentum, a, as shown in Eq. (78).

If training time were of no consequence, we would set the momentum to zero

and make the learning rate infinitesimally small. This, theoretically, would insure that

we eventually reach a low elevation area on the error surface - i.e., a global or local

minimum of the cost function. However, for most problems, training time using this

approach would be unacceptably long. Hence, we need a way to determine learning

and momentum rates that will yield minimum training time for any surface.

Adaptive Learning Rate Algorithm. If the learning rate is too large, a step may

overshoot a "valley", "sink hole", or other depression in the error surface.

Additionally, a non-zero momentum rate will hamper progress if the gradient reverses

direction, as will occur following an overshoot. However, if a relatively flat area of

the error surface is being traversed, the learning rate, and possibly the momentum,

may be reliably increased. These observations lead to an adaptive step-size

adjustment algorithm, detailed below:

"* If the cost function value increases, an overshoot has occurred,
and the learning rate should be reduced and the momentum
set to zero.

"* If the cost function value decreases and the gradient vector
changes direction significantly, a "twisted ravine" is being traversed;
the momentum should be set to zero and the learning rate reduced.

"* If the cost function value decreases, and the gradient vector
does not change direction significantly, a relatively flat surface

is being traversed; the learning rate and momentum may be increased.



67

We may detect significant changes in the gradient vector's direction using the

vector dot product,

S= A .B = I IBI cos6 (86)

where 0 is the angle between vector A and vector B. If 0 is within t 90 degrees, C

will be positive or zero. Hence, if the dot product of the current gradient vector and

the previous gradient vector is negative, we know that the direction of greatest

decrease in the cost function has changed by more than 90 degrees.

After interactively experimenting with various criteria, in various network

training scenarios, the following algorithm was chosen:

(1) If E(t) > E(t-1), then set E(t) = 0.25E(t-1), and a(t) = 0.

(2) If E(t) < E(t-1), and C(t) < 0, then set e(t) = 0.6-(t-1),

and a(t) = 0.

(3) If E(t) < E(t-1), and C(t) > 0, then set e(t) = 1.Le(t-1), and
If a(t-1) s 0, and aft-1) < 0.9, then set a(t) = 1.5a(t-1).
If a(t-1) = 0, then set a(t) = 0.1.

The initial values for e and a are set to 0.01 and 0.009, respectively.

Parameter Adjustment. One way of using the gradient vector components is to adjust

the network parameters after every input-output case. Using this scheme, a network

can only adjust itself to correct for errors in representing the current data point. An

alternative approach, more commonly used, is to accumulate the components of the

gradient vector over all the input-output cases before changing the parameters. This

"batch method" allows the network to adjust itself in a way that will benefit the entire

data set, and is the approach used in this research project.
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Network Training Example

Network Structure and Training Requirements. To demonstrate the utility of the

MPE algorithm a three layer feed-forward net, following the structure shown in

Figure 15, was trained to represent the function

Y = (0.: + 20X2)2  (87)

This function, as shown in Figure 16, is exponential, with Y ranging from 0.5 to 420 in

the X interval (0,1). Our goal is to train the network until the maximum percent error

at every (training) data point is less than 10%. The network has one linear irtput

neuron, one linear output neuron, and 10 sigmoidal (logistic function) hidden neurons.

Eleven input-output pairs were used for training, with X (input) varying from 0 to 1 in

increments of 0.1.
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Figure 16. Function to be learned.
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Results. The network was trained using the adaptive step size and batch parameter

adjustment procedures described previously. Figure 17 shows the accuracy evolution

of the network trained using both the standard backpropagation algorithm and the

MPE algorithm.

After 51,534 passes through the data, the MPE-trained network had reached a

maximum percent error, at any training data point, of slightly less than 10%. The sum

of the percent errors was 15.7%. In the same number of training passes, starting with

the same initial (random) parameter values, the standard backpropagation algorithm

trained the network to a maximum percent error of 25.3%, with a sum of percent

errors of 39.4%. Figures 18 and 19 show the inteipolation or "generalizing"

performance of the networks, in that the networks were tested using X values in

increments of 0.01 to create the figures. The points marked with an "o" indicate the

network's accuracy at the training data points, which are in X increments of 0.1.

Hybrid Training A&proach. Figure 17 shows that the standard method, early in the

training, produced a larger rate of decrease in the percent errors in the network's

output than did the MPE algorithm. This initial success raises the question, what if

the two methods were combined? We observe that when using the standard method,

the percent errors quickly reached "plateau" values, and their rates of decrease

became very small. Hence the decision was made to begin with the standard method,

and switch to the MPE method, when the slope of the sum of the percent errors

curve became greater than -0.1% in 1000 passes.
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As shown in Figure 20, this approach led to a greatly reduced training time.

The training method transition occurred after 6005 passes, when the standard

algorithm had trained the network to a maximum percent error in representing the

training data of 26.5%, and a sum of percent errors of 41.3%. In only 167 additional

passes the MPE algorithm was able to train the network to provide output values

within ± 10% of the desired values. The sum of the percent errors at this point was

27.5%, indicating more error occurred than in the MPE-only case.

Figure 21 shows the "hybrid-trained" network's generalization performance.

We note that this network does not generalize within the desired ± 10% error

envelope. This situation can be rectified with additional training, or by adding more
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data to the training set. We also note that the network has "inherited" the tendency

of networks trained using the standard algorithm to misrepresent the smallest

magnitude data points. However, the MPE algorithm was able, in just 167 passes, to

reduce the training error to below the desired limit.

Figure 22 shows the generalization accuracy of the hybrid-trained network

when we let the MPE phase of the training continue for 45,362 additional passes - to

a total of 51,534 passes, the length of the original training session. At this point, the

network had a maximum percent error in representing the training data of only 4.7%,

and a sum of percent errors of 13.6%. We note from the figure that the network now

generalizes within the desired 10 % envelope, although the errors in representing the

untrained data are greater than those in representing the trained data. We also see

that the tendency to misrepresent the smallest magnitude values has persisted.

Hence we have demonstrated the ability of the MPE backpropagation

algorithm to train a feed-forward net to very accurately represent real-valued data

which spans several orders of magnitude. We have also shown that a "hybrid" training

approach -- standard backpropagation until the slope of the sum of the percent

errors curve is greater than -0.1% in 1000 passes, then MPE backpropagation -- can

often be used to obtain satisfactory results quicker than using the MPE method alone.

Unfortunately, the hybrid approach is not guaranteed to be the most efficient

approach in every case. The topology of the error surface representing the total mag-

nitude error may differ significantly from that of the surface representing the sum of

the percent errors. Hence, a low level elevation on one will not necessarily translate
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Figure 22. Generalization accuracy after combined training (51,534 passes total).

to a similar level on the other. However, the hybrid approach may be a useful

alternative in difficult training situations, or when one wishes to represent the largest

magnitude output values with more relative accuracy than is possible with MPE

training alone.



RESULTS AND DISCUSSION

In this Chapter, we illustrate the effect of various assumptions and physical

characteristics on tether orbit evolution, demonstrate the accuracy of the orbital

element propagation model (EPM) as compared to the multibody model (MBM), and

present orbital lifetime results for free tethers and satellites trailing a tether. We will

also describe a procedure to modify predicted orbital lifetimes to compensate for

initial orbit inclinations other than 28.5 *, and nonzero argument of perigee and true

anomaly values. In the final section of the Chapter, we demonstrate the reliability

and accuracy of the derived orbital lifetime prediction method, by comparing network-

produced results for a large number of randomly chosen test cases with those obtained

using the MBM.

Unless stated otherwise, the assumptions described in the Introduction apply to

all presented results. They are listed here for convenience:

1. The tether is 2 mm in diameter, and has the physical properties of Kevlar

29: E (modulus of elasticity) = 6.2055 x 1010 N/m2 , p (mass density) =

1440 kg/m3, v (Poisson's ratio) = 0.4.

2. The tether is initially unstretched. The system is initially aligned along the
local vertical, orbiting as a rigid rod.

3. The system's initial orbit inclination is 28.5 *, and the argument of perigee
and true anomaly are zero.

4. Orbital lifetime is considered complete when the system center of mass

(CM) reaches 150 km altitude.

75
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Preliminary Findings and Basic Phenomena

In this section we use the MBM to investigate the effect of various

assumptions and physical properties on free tether orbital decay. We will present

results illustrating the effects on orbital lifetime of (1) the length of the segments used

to model a tether, (2) the drag coefficient model, (3) the Earth and atmosphere shape

and state assumptions, (4) the tether's diameter, and (5) the tether's length. In all but

the last of the five sub-sections which follow, we assume a 20 km tether has been

deployed downward from a 300 km (altitude) circular equatorial orbit, stabilized along

the local vertical, and released. In this case, all points below the "parent" end of the

tether are moving at speeds less than that required for circular orbit at their altitude.

This means the CM is at apogee of an elliptical orbit, whose apogee radius is 6668.137

km, and whose perigee radius is 6608.129 km (230 km altitude).

Segment Length Effect. Before beginning large scale investigations, we must decide

on the number of segments to be modeled in a tether of given length. As shown in

Figure 23, there is essentially no difference in the CM altitude-time history when the

tether is modeled with one hundred 200 meter segments (99 beads) or six 3V3 km

segments (5 beads). Figure 24 shows that acceptable results were obtained even when

two 10 km segments were used. Hence, the segment length for all further simulations

was conservatively chosen to be 5 km.

Effect of Drag Coefficient Assumptions. Next, we investigated the effect of using the

empirically derived drag coefficient model described earlier, as compared to using a
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more commonly used constant value of 2.2. As shown in Figure 25, allowing CD to

vary caused the most difference at low altitudes. This results from two factors: First,

the atmospheric mass density is relatively small at the higher altitudes, greatly reducing

the magnitude of aerodynamic forces, and hence the effect of the drag coefficient, in

that region; and second, a 2 mm diameter circular cylinder experiences free molecular

flow conditions (large Kn) to an altitude below 100 km, keeping it's drag coefficient at

the free molecular value of 2.8. So, the differences in the altitude-time histories

shown in Figure 25 actually result from a magnitude difference of 0.6 in the drag

coefficient. All further simulations use the empirically derived CD model.
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Figure 25. Effect of drag coefficient model on orbital decay.
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Effect of Earth and Atmosphere Assumptions. To demonstrate the effects of the

assumed shape of the Earth and the shape and state of the atmosphere on a tether's

orbital decay, the simulation was run for 3 configurations: (1) assuming a spherical

Earth and a non-rotating, spherical atmosphere, (2) assuming a spherical Earth and a

rotating, spherical atmosphere, and (3) assuming an oblate Earth and a rotating,

oblate atmosphere. As shown in Figure 26, the oblate Earth and rotating, oblate

atmosphere model produced the shortest orbital lifetime. The spherical non-rotating

model produced an increased lifetime, apparently due to the increase in dissipative

drag forces being more than offset by the decrease in gravitational forces. As a

validation point, we note that the time required for the tether CM to reach 200 km

altitude in this case (2 h44' 17 ) is within 20 seconds of the result obtained by

Bergamaschi and Morana' when they used similar assumptions. Allowing the

spherical atmosphere to rotate increased the orbital lifetime, due to decreased drag

forces in a posigrade motion, but also caused the greatest departure from the results

obtained using the rotating oblate model.

Hence, we see that assuming an oblate Earth and a rotating, oblate

atmosphere yields lifetime results which are significantly different from those of the

simpler models. In all further simulations, the oblate, rotating models for the Earth

and its atmosphere were used.

Tether Diameter Effect. A more surprising result involves the effect of the tether's

diameter on its orbital lifetime. One might intuitively believe that increasing a tether's

diameter will reduce its lifetime, because the increased area will cause larger drag
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forces. However, as shown in Figure 27, increased diameter actually causes increased

orbital lifetime. The cross-sectional area and drag force magnitude increase with

increased diameter, but, as Eq. (88) shows, the ballistic coefficient, 3, actually

decreases, since it is inversely proportional to the diameter. In this equation, L is the

tether's length, d is the tether's diameter, A is its cross-sectional area (L x d), Ptetlhr is

the tether's mass density, and M is the tether's mass.

CDA 4CDLd 4 CD
S== - 2 (88)

M 7rLd 2 , ' dPP(88

Because the tether's mass is proportional to d2 and the drag force is proportional to d,

the acceleration due to aerodynamic drag decreases as tether diameter increases.

Consequently, a large diameter tether dissipates less orbital energy per unit mass per

unit time than a small diameter tether, and will therefore have a longer orbital

lifetime. We assume a 2 mm diameter for all further simulations, and note that this is

the most common size proposed in the literature.

Length Effect. Equation (88) shows that a tether's length has no effect on the

ballistic coefficient, and hence no effect on the force per unit mass experienced due to

drag forces. However, a long vertical, or near vertical, tether will encounter the more

dense portions of the atmosphere earlier in its lifetime than a short tether. Thus, a

long tether will dissipate orbital energy sooner than a short tether, reducing its

lifetime. This characteristic is illustrated in Figure 28, for two tethers of different

lengths. The CM of each tether was initially in a circular orbit, with an orbit

inclination of 40, and a semi-major axis length of 6778.137 km.
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The results shown in Figure 28 illustrate a potential problem with using orbital

lifetime prediction techniques designed for use with single-mass satellites. Various

techniques for lifetime prediction and orbit propagation exist, with some of the most

well-known having been developed by Sterne"g, Liu", and King-Hele9". Regardless of

the approach, the ballistic coefficient, in one form or another, is always an included

factor which brings the dissipative effects of aerodynamic drag into the analysis and

results. As we have shown, a tether's ballistic coefficient is independent of its length,

but the length certainly has an effect on the orbital lifetime. Hence, we conclude that

single-mass orbital lifetime prediction methods will not properly account for tether

length effects, which may lead to significant errors in predicted lifetimes.
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Figure 28. Effect of tether length on orbital decay.
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The example results presented in Figure 28 show a length-induced difference in

lifetime to 150 km (altitude) of approximately 9.1 hours, which is 15% of the lifetime

of the 20 km tether, and 17% of the lifetime of the 100 km tether. We will return to

this topic later in this Chapter, and present results showing the general unreliability of

single-mass results for most tethered systems.

Element Propagation Model Performance

As discussed in the Mathematical Models Chapter, the orbital element

propagation model (EPM) relies on the assumptions that the tether is inextensible and

aligned along the local vertical at all times. The validity of these assumptions is

confirmed in this section by results obtained using the multibody model (MBM), which

show that both the in-plane and out-of-plane libration angles, though oscillatory,

remain small during orbital decay, even for systems in inclined orbits where out-of-

plane accelerations are significant. The libration angles indicate the displacement

between a straight line approximation for the tether, and the local vertical, as seen

from the parent's location. A positive in-plane angle indicates the upper end (i.e., the

initially higher altitude end) of the system leads the lower end (i.e., the initially lower

altitude end). A positive out-of-plane angle indicates the subsatellite is currently

"north" of (i.e., above) the orbit plane of the parent.

In this section, results showing the accuracy of the EPM, as compared to the

MBM, for free tethers, satellites trailing a tether, and a tethered system (parent-

tether-subsatellite) are presented.
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Free Tether Performance. Figure 29 shows the CM altitude-time history of identical

20 km tethers, released in 3 different equatorial orbits. Each CM orbit was initially

circular, and the initial altitudes were 400 km, 450 km, and 500 km. As shown in the

figure, the percent differences in lifetime to 100 km between the EPM and the MBM

were quite small. These accuracies were obtained using an EPM time step of 1% of

an orbit period, and are typical of many other free tether scenarios tested, including

longer tethers and/or inclined orbits.

For example, the EPM lifetime of the 20 km tether presented in Figure 28

(itcm = 400) was only 0.4% less than the MBM result. The EPM lifetime of the 100

km tether in Figure 28 differed by only 0.7% from the MBM result.
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Figure 29. Element propagation model performance with free tethers.
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The element propagation technique also dramatically reduced computing time.

For example, simulation of the 14-day orbital decay shown in Figure 29 took nearly 5

hours on a Sun SPARC workstation, using the MBM. The EPM was used to simulate

the same decay, on the same machine, in just 58 seconds. This is an improvement in

the ratio of simulated orbit time to computing time of over 300 to 1.

Upward-Deployed Subsatellite Trailing a Tether. Performance of the EPM was tested

on a system composed of a 500 kg mass, 2 m diameter subsatellite, deployed upward

on a 20 km tether from a 300 km (altitude) circular orbit, and released. This scenario

simulates the behavior of NASA's planned "TSS-1" experiment, if the tether happens

to be inadvertently, or purposely, freed from the Shuttle. As Figure 30 shows, the

500 . . . . . . . .

450 kin-6752.8 km,. .o-0.00831, 6,n-28.5"

400
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Figure 30. Element propagation model performance on 'TSS-I".
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Figure 31. 'TSS-1" in-plane libration angle during decay.
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Figure 32. "'SS-1" out-of-plane libration angle during decay.
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EPM yielded a result only 1.5% less than that of the MBM. The close agreement

between the models is explained by the small libration angles which occurred during

most of the orbital lifetime, as shown in Figures 31 and 32.

"SEDS" Orbital Decay. The Small Expendable Deployer System (SEDS) is a

lightweight, spinning-reel system designed to deploy a payload attached to a 20 km

tether, which is cut after deployment.92 The first planned experiment with this system

involves downward deployment of a subsatellite from a spent Delta rocket upper

stage, which serves as the parent vehicle. Although the lifetime prediction methods

derived in this research project do not include techniques for "complete" systems (i.e.,

parent-tether-subsatellite), the performance of the EPM in simulating the orbital

decay of such systems is, nevertheless, of interest. Hence, the orbital decay of the

SEDS system was simulated, assuming the 20 km tether connecting an 875 kg, 3.048 m

parent and a 23 kg, 0.25 m subsatellite, was not cut.

The parent was initially in a 204 km x 704 kin, 28.5 * inclination orbit, and the

subsatellite had been deployed downward, along the local vertical. As shown in

Figure 33, the EPM produced a result only 2.8% less than the MBM. The slightly

reduced accuracy, as compared to the cases presented previously, is explained by the

larger libration angles which occurred in this scenario. Figures 34 and 35 show the in-

plane and out-of-plane libration angles during the orbital decay.

Satellite Trailing an Upward-Deployed Tether. The final scenario considered in this

section is that of a fairly large subsatellite trailing an upward-deployed tether. We
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Figure 35. "SEDS" out-of-plane libration angle during decay.

assume a 2000 kg, 3.048 m subsatellite is trailing an upward deployed 20 km tether,

whose parent end (i.e., the upper end, 20 km above the satellite) is initially in a

circular, 28.5 * inclination orbit, with a semi-major axis length of 6778.137 km. Thus,

this is essentially a simulation of the orbital decay of a subsatellite deployed downward

on a 20 km tether from a space station, or other vehicle, in a 400 km (altitude)circular

orbit, and released.

Once again, as shown in Figure 36, the element propagation model performed

admirably, yielding a lifetime to 150 km only 1.4% less than the MBM. The libration

angle time histories were similar to those in the TSS-1 simulation.



90

400

360

320

280
E
- 240

200 Mulbody model
<160

0 120 A 1.4%

20 km tether
80 2000 kg, 3.048 m subsatelllte

40 5aw,=6700.7 km, ee..0.0086. icm 2 8 .5 °

0 1 i . . I . . I I I

0 1 2 3 4 5 6 7 8 9
Elapsed time, days

Figure 36. EPM performance on downward-deployed subsatellite.

Orbital Lifetime Prediction Accuracy

Predicting the orbital lifetime of any satellite, via numerical simulation, or a

semi-analytical method, is a process rife with uncertainty. The major uncertainties can

be grouped into two categories: attitude and environment.

Attitudinal variables enter the calculations through the ballistic coefficient.

The drag coefficient, the current cross-sectional or reference area, and even the

current mass may not be precisely known. The current area and mass depend on the

constantly varying physical configuration of the spacecraft, and may depend on its

orientation relative to the direction of motion. The drag coefficient may vary with the
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spacecraft's orientation and configuration, and is also a function of other physical

properties, such as the vehicle's surface coating, its temperature, and the temperature

and composition of the local atmosphere.

The models developed in this research project include the effects of attitudinal

variations on the orbital lifetimes of freely-decaying tethered systems. In the MBM, a

tether's cross-sectional area is continually adjusted in response to its elastic behavior,

and the drag coefficients of the tether and any end-body are empirically derived,

shape-dependent values for uncooled bodies, which vary as a function of the flow

regime being encountered. We showed previously that the altitude variation of a

tether's drag coefficient can significantly affect lifetime results. The results presented

in the previous section demonstrated the accuracy of the EPM, as compared to the

MBM, indicating that variations in tether cross-sectional area may be ignored.

The effects of environmental variables on the orbital lifetime of freely decaying

systems have also been included in the models developed here. We have shown, for

the altitudes of interest, that third body perturbations are insignificant compared to

those resulting from aerodynamic drag and the Earth's oblateness. We have also

observed that perturbations due to the Earth's oblateness may be many times larger

than the drag perturbation, depending on the altitude. Hence, the models developed

in this research project include contributions from both sources.

The major effects of the Earth's oblateness are reflected in the generated

orbital lifetime results, since J2 is included in the gravitational potential function. The

modeled atmosphere is oblate and rotating, and has the physical properties of a very
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recently derived standard atmosphere model, the 1986 COSPAR International

Reference Atmosphere.

To remove time and latitude dependency from the calculated lifetime results,

globally and temporally averaged atmospheric properties defined by the COSPAR

model were used. Rather than finding the average lifetime of a very large number of

time and latitude dependent orbital decay cases, for each systcan and initial orbit of

interest, the approach used in this project was to find the lifetimes of interest using

average values for the atmosphere's properties.

In a recent study, Hoots and France93 investigated the effect of environmental

uncertainty on orbital lifetime calculations. They used the semi-analytical orbit

propagation equations of Liu and Alford94 to simulate the orbital decay of 18 single-

mass satellites originating in various Earth orbits. Atmospheric mass density modeling

was based on the Jacchia 1970 model, which provides atmospheric properties as a

function of exospheric temperature, and includes corrections fur diurnal, geomagnetic,

semi-annual, and seasonal-latitudinal effects.95

The "prime movers" of the model atmosphere's properties are (1) the value of

the solar flux at the 10.7 cm wavelength, Fo.7 , and (2) disturbances of the geomag-

netic field, as recorded by the Geomagnetic Planetary Index, Ap,. The solar flux

disturbs the geomagnetic field, and both variables cause perturbations in the

atmosphere's mass density.9'

The 18 orbital decay scenarios studied had a range of lifetimes from 10 days to

one year. For each scenario, Hoots and France calculated 500 Monte Carlo lifetime



93

predictions, using a random draw from a generic solar cycle to determine values of

F 0.7 and A, at each integration time step. Hence, the calculated result for each

scenario was a sample of 500 lifetime predictions, any one of which could have

occurred for the satellite of interest. The 500 lifetime predictions for each scenario

were analyzed stati:.ically, and it was found that the skewness and kurtosis for each

scenario were very close to the theoretical values for normal distributions.97 rlotting

the frequency distribution of the 500 lifetime predictions for a given scenario yields a

distribution that appears to be nearly normal.

As Hoots and France report, these results can be related to operational

experience at the U. S. Space Command, where, over more than 30 years of

experience, a "rule of thumb" has evolved concerning the uncertainty of decay

predictions during the final 30 days of a satellite's orbital lifetime. The rule states that

the uncertainty in a predicted lifetime during this period will be approximately

- 20%.98

An analysis of the results presented by Hoots and France shows that for the

five scenarios in which the mean lifetimes were 30 days or less, the average of the

three standard deviation levels, in terms of percent difference from the average

lifetime for the scenario, was 17.6%, with a maximum three standard deviation level of

22.6%, and a minimum three standard deviation level of 14.6%. These numbers agree

very well with the rule derived from Space Command's operational experience.

Including all scenarios having lifetimes of 60 days or less yields an average of

the three standard deviation levels of 15.9%, with a minimum of 11.0% and a
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maximum of 22.6%. The average of the three standard deviation levels of all 18

scenarios was 10.75%, with a minimum of 3.5% occurring in a scenario whose mean

lifetime was 366 days, and a maximum of 22.6%, occurring in a scenario whose mean

lifetime was 19 days.

These results have direct bearing on the accuracy required of the lifetime

prediction method developed in this research project. Since we assume the

numerically generated results are "truth", we have only to set accuracy limits on their

functional representation. That is, we may use the results obtained by Hoots and

France as a guideline to specify the accuracy with which the trained artificial neural

networks must represent the generated orbital lifetime data.

Since almost all of the orbital lifetimes encountered in this project were

expected to be less than 60 days, and the vast majority were expected to be less than

30 days, the required ANN accuracy limit was set at ± 20%. The lifetime prediction

networks were trained to represent the training data, which spanned the applicable

data space, with no more than ± 10% error at each point. In so doing, we attempted

to keep eventual (network) generalization errors to within the desired ± 20% limit.

Predicting Free Tether Orbital Lifetime

The EPM was used to simulate the orbital decay of free tethers originating in

small eccentricity orbits. Points on a series of "lifetime prediction curves" were

determined by varying the perigee and apogee radii (R., R,) of a given tether's initial

CM orbit. The radii included in this study range from 6578.137 km to 6878.137 kin,
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the limits discussed previously. All "baseline conditions" discussed in previous sections

were also applied. Orbital lifetime was considered complete when a tether's CM

reached 150 km altitude.

Free Tether Orbital Lifetime Prediction Curves. As shown in Figure 37, plots of the

orbital lifetime of a 20 km free tether versus a factor involving the initial CM orbit

size and shape (RP, R., e), on a semi-log plot, are fairly straight. The "size and shape

factor", RP, + (Ra-R,) / (1 +e), was chosen as the abscissa, and used in a semi-log

format, because this combination yields curves that may be easily read, even at points

2 20 km free tether
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Figure 37. Orbital lifetime prediction curves for 20 km free tether.
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other than those generated, to predict the orbital lifetime of the free tether. Initial

perigee and apogee radii were varied in increments of 50 kin, and each "horizontal"

curve represents a fixed initial perigee radius. Predicting the lifetime of a tether

having a perigee radius other than one of those shown can be easily accomplished by

interpolating between two bounding curves.

The far left point on each horizontal curve is the lifetime of the tether when

its CM is initially in a circular orbit (RP = Rj). Hence, the curve running from the

2 A Rp=6578 km - 125 km tether . 7
V Rp,,6628 km .... - 10 km tether

1 02 A Rp-6678 km
V Rp-6728 km
* Rp-6778 km
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Figure 38. Orbital lifetime prediction curves for 125 km and 10 km free tethers.



97

lower left corner to upper right corner of the figure is the lifetime prediction curve for

a 20 km free tether whose CM is initially in a circular orbit.

Figure 38 shows the lifetime prediction curves generated for 125 km and 10 km

free tethers. The effect of tether length on orbital lifetime is demonstrated in this

figure, which clearly shows that a "long" tether has a shorter lifetime than a "short"

tether. On a percent difference basis, tether length has the most effect on orbits with

initially small perigee and large apogee radii. The lifetimes depicted in the figure

range from a low of less than 30 minutes for a 125 km tether whose CM is initially in

a circular orbit of radius 6578.137 km, to a maximum of nearly 15 days (353.6 hours)

for a 10 km tether originating in a circular orbit of radius 6878.137 km.

Neural Network Representation. As shown in the previous section, values for 3

independent variables were chosen to predict the orbital lifetime of a free tether: the

CM orbit's initial radius of perigee, R.; the CM orbit's initial size and shape factor,

"fac" (i.e., the factor shown below the horizontal axis in Figure 37 and Figure 38);

and the tether's length, L.

An artificial neural network was trained, using the Minimum Percent Error

training algorithm, to represent the mapping between the independent variables and

the orbital lifetime of free tethers. The feed-forward network was composed of three

linear input neurons, 30 hidden sigmoidal (logistic function) neurons, and one linear

output neuron. As discussed in the Artificial Neural Networks Chapter, the input

data values, i.e., the values of the independent variables, were scaled to the interval

(0,1). The network output is the orbital lifetime, in units of hours.
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As shown in Figure 39, the network requires that a scaled radius of perigee,

R?, ~be provided to the first input neuron, a scaled size and shape factor, fac be

provided to the second input neuron, and a scaled tether length, L ' be provided to

the third input neuron. The scaled inputs have magnitudes between zero and one,

and exact details of the scaling procedures are included in Appendix C.

RP' fac' L!

(30 hidden neurons)

Lifetime, hours

Figure 39. Free tether orbital lifetime prediction network structure.

The network was trained in stages, using data generated with the orbital

element propagation model. Initially, lifetime data for 10 km, 60 kin, and 125 km

tethers comprised the training data set. The data set for each length consisted of 28

points, generated by systematically varying the tether CM's initial orbit radii of perigee

and apogee in 50 km increments, which is precisely the procedure used to create each
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length case shown in Figure 37 and Figure 38. Thus, the lifetime prediction data

points that would be used to create a set of lifetime prediction curves, like those in

Figure 37 for a 20 km tether, were used to train the network to represent the

mapping for each length of interest.

The training data set was expanded after the network had learned to represent

the lifetime data for the 10, 60, and 125 km tethers with less than 20% error at every

point. The expanded training data set was composed of lifetime data for 10, 20, 40,

60, 80, 100, and 125 km tethers, a total of 196 points, in a four-dimensional space.

Training with the expanded data set was continued until the network had

learned to represent the mapping at each point with less than 10% error. The final

weights and biases for the trained network are included in Appendix C.

The network's generalization (i.e., interpolation) accuracy was tested by

comparing its output with EPM-generated data for tether lengths and/or perigee and

apogee radii not included in the training data. In most cases, the network's accuracy

was significantly better than the 10% goal, and the maximum error observed in any

case was slightly less than 12%.

Figure 40 compares the network's output for a 50 km tether, which was a

length not included in the training data set, with data generated using the EPM. The

network output was generated by varying the perigee and apogee radii in 25 km and

10 km increments, respectively. The accuracy of the results in this case is typical. The

maximum representation error was 9.1%, occurring at the largest magnitude lifetime

value.
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Figure 40. Trained network output and orbital lifetime data for 50 km free tether.

Additional results demonstrating the trained network's accuracy in representing

the orbital lifetime of free tethers are presented later in this Chapter.

Comparison with Single-Mass Orbital lifetime Results. As we noted previously,

single-mass orbital lifetime prediction techniques rely on the ballistic coefficient to

account for the dissipative effects of aerodynamic drag. Since the ballistic coefficient

for a tether is independent of its length, the single-mass techniques will make no

distinction between long and short tethers, which may result in significant errors. We
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earlier showed one case where reducing the length of a freely decaying tether

increased its lifetime by 17%.

To further investigate the errors which may result from using single-mass

techniques, the EPM was used to generate lifetime prediction curve data for (single-

mass) spheres whose cross-sectional area and total mass were equivalent to that of

deployed tethers. Data were generated for spheres representing tether lengths of 10,

20, 40, 60, 80, 100, and 125 km, the lengths included in the "expanded" network

training data set.
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Figure 41. Error in equivalent sphere orbital lifetimes.
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The maximum, minimum, and average percent error in the sphere results for

each length, as compared to deployed tether results, are shown in Figure 41. The

magnitude of the lifetimes represented range from less than 30 minutes, to more than

two weeks. The figure shows that the maximum error exceeds 10% for tether lengths

greater than approximately 25 km, while the average error exceeds 10% and the

maximum error exceeds 20% for tethers longer than approximately 48 km. The

average error exceeds 20% for tethers longer than approximately 77 km, and the

minimum error is greater than 20% for tethers longer than approximately 105 km.

Thus, we conclude, based on our earlier discussion of desired reasonable

accuracy in predicted orbital lifetimes, that single-mass techniques are generally

unreliable for free tethers longer than approximately 48 kin, although results with less

than 10% error may be obtained for tethers as long as 70 km. Single-mass results

should never be used for tethers longer than approximately 105 km, as this is the

length at which the minimum error exceeds 20%.

Recalling that the free tether lifetime prediction network described earlier

provides predicted orbital lifetimes within 10% of those calculated by the EPM, we

note that the network's output will, on average, provide a better prediction than a

single-mass result, for tethers longer than approximately 48 km. For some cases

involving tether lengths between 25 km and 48 km the network's result will be more

accurate than single-mass results, since the maximum error exceeds 10% in this region.

Finally, we observe that, without exception, the trained network will provide a more

accurate result for any tether longer than approximately 70 km.



103

Effects of Initial Inclination, Argument of Perigee, and True Anomaly

The orbital lifetime prediction results presented in the previous section are

based on the assumption that a system's CM is initially in an orbit with an inclination

(i) of 28.5*, and zero initial argument of perigee (w) and true anomaly (v) values. In

this section, results illustrating the effects on orbital lifetime of "non-standard" initial

values for these variables - i.e., values other than those previously assumed - are

presented. (The longitude of the orbit's ascending node (0l) is of no consequence,

since neither the Earth nor atmosphere are modeled with longitudinal variations.) A

strategy to account for inclination, argument of perigee, and true anomaly effects on

orbital lifetime predictions is derived, and an ANN trained to represent numerically

generated data is described. The ANN's generalizing ability is demonstrated, and the

performance of the derived "lifetime correction factor" procedure is tested in a "worst

case" scenario. We also describe an inclination-only lifetime correction factor

procedure, and test its performance in the "worst case" scenario. Demonstration of

the abilities of both procedures, in a wide variety of scenarios, is reserved for the last

section of this Chapter.

Basic Phenomena. In this section we illustrate, separately, the effects on orbital

lifetime of initial orbit inclination, argument of perigee, and true anomaly. The

inclination dictates the altitude of an object in a given orbit -- high inclination orbits

involve higher altitudes than low inclination orbits, due to the Earth's ellipsoidal

shape. The value of the argument of perigee, which specifies the angular distance
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between the ascending node vector and the eccentricity vector, relates directly to the

altitude of the orbit's point of closest approach. A high altitude perigee will result in

longer lifetimes than a low altitude perigee, if all other factors are equal. The initial

true anomaly value, which specifies a system's initial position relative to perigee,

indicates whether the system is inbound to, or outbound from, the point of closest

approach. The initial true anomaly value may make a significant difference in the

orbital lifetime of a system in a highly eccentric orbit with a small perigee radius.

Figure 42 shows the physical relationship between the angular orbital elements

and the geocentric latitude, 46. A well-known identity for right spherical triangles"

may be used to express the latitude as a function of the orbital elements,

sin 4 = [sin i][sin ( (o + v )] = [sin i][sin U] (89)

where, as before, U is the argument of latitude. One interpretation of this relation is

that the geocentric latitude equals the orbit inclination, as modified by the sine of the

argument of latitude. If U is 90", we observe that the inclination equals the

geocentric latitude, which is a maximum at this point.

Recalling from the Mathematical Models Chapter that altitude above an

ellipsoidal Earth increases as sin 20 increases, we note that the altitude of any point in

an orbit will therefore increase as sin2 i increases. Since higher altitudes mean lower

atmospheric mass density, and correspondingly lower aerodynamic drag forces, we

deduce that a system in a high inclination orbit will have a longer orbital lifetime than

an identical system in an identical orbit at a lower inclination. The inclination will also
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Figure 42. Geocentric latitude and angular orbital elements.

affect the orbit radius at which the lifetime is considered complete, since calculations

continue until the system CM reaches 150 km altitude, which is latitude dependent.

To illustrate these effects, lifetime prediction curve data (i.e., 28 points per

case, 6578.137 km S RP < 6878.137 kin, R.5 , R. ,: 6878.137 kin) was generated,

using the EPM, for 10 km, 50 km, and 125 km tethers originating in orbits inclined at

80 and 28.5 *, with arguments of latitude equal to zero. The lifetimes at each

simulation point are compared in Figure 43, which shows the percent differences of

the i = 80 lifetimes from the i = 28.5 lifetimes. The percent differences were

calculated from
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Lifetime Difference(%) = 9i-so-.u-v-. - 9i-28.5-.,-v-o x 100 (90)
9i -28.5", w -v -0

where 9 is the orbital lifetime, to 150 km altitude, of a selected tether. Only lifetimes

for equal length tethers are compared.
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Figure 43. Effect of initial orbit inclination on lifetime (c( = v= 0).

Figure 43 illustrates two important characteristics. First, we note that the

largest percent differences in orbital lifetime occur for the longest length tether. This

is in keeping with the fact that a "long" tether will encounter the more dense portions

of the atmosphere sooner than will a "short" tether. Second, we see that the percent
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differences in lifetime decrease as the initial radius of perigee increases. This result is

also logically expected, since the relative significance of altitude differences, resulting

from the Earth's ellipsoidal shape, is reduced with increased orbit radii. The figure

also shows the mean of the percent differences in lifetime, 12.61%. As shown in

Table 2, this result is identical to the mean of the percent differences for the 50 km

tether.

Table 2. Lifetime percent difference statistics, i = 80 * vs. i = 28.5

Tether Mean Maximum Minimum
Length Difference Difference Difference

(km) (%) (%) (%)

10 12.17 24.9 5.1

50 12.61 24.4 5.4

125 13.06 26.4 6.4

If all orbital elements are held constant while the initial argument of perigee is

varied, Eq. (89) shows that the geocentric latitude at which perigee occurs will also

vary. As we previously observed, increasing the latitude of the point of closest

approach has the result of increasing its altitude, and hence extending orbital lifetime.

When w is 90, perigee occurs at the most northern point in an inclined orbit, which is

also the point at which perigee altitude is a maximum. Hence, the orbital lifetime of

systems originating in orbits whose argument of perigee is 90 * (or 270') will have
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longer lifetimes than identical systems originating in identically sized and shaped orbits

whose initial arguments of perigee have any other value.

Figure 44 shows the percent differences in orbital lifetime for 10, 50, and 125

km tethers originating in orbits which are identical except for their initial arguments of

perigee. The EPM was used, as described in the previous example, to generate the

lifetime prediction curve data for each of the tethers. In each case, the initial

inclination and true anomaly values were 28.5 and zero, respectively.

2 5 .0 .. . . . . . . . . . . . . . . . . .

22.5 
m =900 compared to ca=0 0

20.0
A 50 km tether

17.5 10 km tethe;
EA 125 km tether
S15.0 A

. 12.5

C) 10.0 9.03%

3 7.5

o5 5.0

2.5

0.0
6550 6600 6650 6700 6750 6800 6850 6900

Initial perigee radius, km

Figure 44. Effect of initial argument of perigee on lifetime (i = 28.5 v = 0).

The characteristics noted in the inclination example are again evident. The

largest percent differences in the orbital lifetimes occur with the longest length tether,
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and the effects of the initial differences in argument of perigee diminish as the radius

of perigee increases.

Table 3 lists the mean, maximum and minimum percent differences in orbital

lifetimes which occurred for each tether length. Here, we see that the means of the

lifetime differences are separated by less than one percentage point. We also note

that the mean for the 50 km tether is close to the mean of all the cases, 9.03%,

shown in Figure 44.

Table 3. Lifetime percent difference statistics, w = 900 vs. (a = 0.

Tether Mean Maximum Minimum
Length Difference Difference Difference

(kn) (%) (%) (%)
10 8.73 13.6 5.8

50 8.81 14.7 5.8

125 9.55 22.6 6.2

The initial true anomaly value indicates a system's starting location in its orbit.

Values between zero and 180° indicate the system is outbound from perigee,

approaching apogee, while values greater than 1800 mean the system has passed

through apogee and is approaching perigee.

Figure 45 shows the percent differences in the lifetimes of 10, 50, and 125 km

tethers released at apogee (v = 180°), as compared to systems released at perigee
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(v = 0). The EPM was used to generate the lifetime data, and the initial orbit

inclination and argument of perigee were 28.5 and zero, respectively, for each case.
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Figure 45. Effect of initial true anomaly on lifetime (i = 28.50 C = 0).

Once again, we note that the percent differences in lifetime are largest for the

125 km tether. We also observe that the difference in true anomaly has an essentially

negligible effect on orbits whose initial radius of perigee is greater than approximately

6828 km. This fact, along with the large percent differences which occur when the

radius of perigee is 6578.137 krn, indicates that differences in true anomaly have

significant effects on orbit decay only in the first few orbit revolutions.
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Table 4. Lifetime percent difference statistics, v = 1800 vs. v = 0.

Tether Mean Maximum Minimum
Length Difference Difference Difference

(kin) (%) (%) (%)

10 -9.18 0.0003 -26.5

50 -9.60 0.0003 -29.6

125 -13.42 0.6 -52.4

As shown in Figure 45, the mean of all the percent differences in this scenario

was -10.73%. We see in Table 4 that the mean of the percent differences for the 50

km tether is the closest of the means of the three lengths to this value. The figure

and table show that lifetime differences greater than 20% in magnitude occurred for

each of the tether lengths considered. The largest differences occurred when the

initial radius of perigee was 6578.137 k1m, but these quickly diminished as initial

perigee radius was increased.

Combined Effects. In the previous section, we demonstrated, separately, the effects

of initial orbit inclination, argument of perigee, and true anomaly on the orbital

lifetime of free tethers. If the non-standard initial values occur simultaneously for all

three variables, we expect to obtain lifetime results which are significantly different

from those of the "standard" scenario, i = 28.5 , (a = v = 0.

Figure 46 shows the percent differences in orbital lifetimes for a 125 km tether

whose initial angular orbital elements are a combination of the scenarios presented

earlier: i = 80", w = 90*, v = 180*. As before, data the figure was created using
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lifetime prediction curve data generated by the EPM. The percent differences

between the "standard" and "actual" lifetimes were calculated from

Lifetime Difference (%) = standard - •ac•l x 100 (91)
Sf actual

where Al is the 125 km tether's orbital lifetime when initially i = 80°, W = 900,

v = 180 0, and at,,add is the same tether's lifetime when initially i = 28.5 ', and

= v = 0.

The initial conditions applied in the "actual" scenario essentially represent a

"worst case". The initial orbit inclination is much larger than that of the standard

case, implying significant altitude differences between the two. The 90' argument of

perigee places the point of closest approach at the most northern point of the orbit,

where the altitude of perigee is greatest. The 180 * true anomaly value indicates the

system CM is initially at apogee, which means the system is bound for perigee, and the

most dissipative region of the orbit.

As Figure 46 shows, the percent differences between the lifetimes in the

standard cases, and those which result when the 125 km tether originates in the

combined effects, "actual" orbits, are quite large. The mean of the differences is

-46.3%, with a maximum difference of -66.1%, and a minimum of -29.5%. In other

words, on average, the lifetime of a 125 km tether originating in an orbit with

i = 28.5 *, and w = v = 0, will be only 53.7% of the tether's lifetime when it

originates in an identically sized and shaped orbit with i = 80", w = 90", and

v = 180".
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Figure 46. Effect of initial inclination, argument of perigee and true anomaly.

Figure 46 also shows the percent differences in lifetime which result if a

correction factor equal to the sum of the means obtained in the separate effects

scenarios is applied. The sum of the percent difference means obtained for the 125

km tether is 9.19% (13.06% + 9.55% - 13.42%), and the predicted lifetimes are

calculated from

9predicteW = 1.0919 , sa-,a, (92)

The percent differences in the orbital lifetimes are calculated from

Lifetime Difference (%) = 9preic - ga"wi x 100 (93)
gactul
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The mean of the percent differences between the lifetimes obtained using Eq. (92)

and those which result when the 125 km tether originates in the combined effects,

"actual" orbits, is -41.4%, with a maximum difference of -62.4% and a minimum of

-21.8%.

The poor performance of the summation correction factor is not surprising. As

we noted previously, geodetic altitude varies with the square of the sine of geocentric

latitude, which is the product of the sines of the orbit inclination and argument of

latitude. The altitude specifies an atmospheric mass density, whose altitude variation

is exponential, which is a key factor in the calculation of aerodynamic drag. Hence,

we see that the effects of the initial angular orbital elements are interrelated, and

highly nonlinear.

Nevertheless, the idea of predicting the orbital lifetime of a tether originating

in a "non-standard" orbit, by applying a correction factor to lifetime results obtained

for a "standard" case, is an approach we will pursue. In the next section, we will

derive and implement a strategy, based on a system's initial angular orbital elements,

to obtain appropriate lifetime correction factors.

Deriving lifetime Correction Factors Using An Averaging Approach. As the results

in the previous section's scenarios suggest, it may be possible, by shifting the center of

the lifetime percent difference error band, to predict, adequately, orbital lifetimes by

applying a correction factor to "standard" lifetime results (i = 28.5 * w = v = 0). To

minimize simulation cases and numerical representation complexity, an "averaging"

approach was used. The objective was to find correction factors that apply to groups
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of cases, i.e., those which occur in similar "scenarios", rather than attempting to find

specific corrections for each possible case.

The analyses and results presented in the previous section show that initial

values of three angular orbital elements have potentially significant effects on orbital

lifetime: orbit inclination, argument of perigee, and true anomaly. Additionally, the

results show some dependence on tether length.

We may evaluate the significance of the spread of the minimum, maximum,

and mean percent differences shown in Table 2, Table 3, and Table 4 by converting

the percentages to lifetimes, in terms of the "standard" case lifetimes, S,.d Our

objective is to determine whether or not using the mean percent difference for a given

scenario will yield acceptable approximations for the lifetimes of all, or at least most,

of the cases possible in the scenario.

If the mean percent difference is to be used to provide reliable lifetime

estimates, it must yield results within ± 20% of the value of any "actual" lifetime

occurring in a scenario (recall that each "scenario" is composed of many individual

"cases"). We can determine the mean percent difference's relationship to all cases in

a given scenario by comparing the lifetimes produced using the mean percent

difference as a "correction factor", with the lifetimes occurring in the maximum and

minimum percent difference cases. If the estimated lifetimes are within ± 20% of the

lifetimes in the extreme cases, the mean percent difference will yield acceptable results

for all cases in the scenario. The percent error between the estimated and actual

lifetimes, in the maximum percent difference case, is
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Max Value Error (%) = 9 " gmax 100 (94)

and the error in the minimum percent difference case is

Min Value Error(%) =•" - i(95)
9rin

where 9.. is the lifetime occurring in the maximum percent difference case, s. is

the lifetime occurring in the minimum percent difference case, and 9 is the

estimated lifetime which results from applying the mean percent difference as a

correction factor to the system's lifetime in the applicable standard-scenario case.

For example, the mean percent difference in orbital lifetime shown in Table 2,

for a 50 km tether, is 12.61%. This indicates that on average, the orbital lifetime

when i = 80*, and w. = v = 0, is 1.1261 !4,.dd. In other words, on average, the

orbital lifetime in the "non-standard" case ( i = 80", w = v = 0) is 1.1261 times the

lifetime of the same tether, released in an identical size and shape "standard" orbit (i

= 28.5 *, (a = v = 0). The largest difference between 50 km tether lifetimes in the

standard and non-standard cases was 24.4%, or 1.244 9,td,.d. Similarly, the minimum

difference was 1.054 9,tda. Checking the maximum and minimum percent difference

cases, we obtain

Max Value Error = 1.1261 - 1.244 x 100 - -9.48%
1.244

Min Value Error =1.1261 - 1.054 x 100 = 6.84%
1.054
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These results show that, for the 50 km tether, using the mean percent difference in

lifetimes as a "correction factor" to predict non-standard lifetimes from standard

lifetimes, will yield results within ± 10% of the lifetime value for any non-standard

orbit encompassed by the lifetime prediction curve data.

The individual effects scenarios presented in the previous section indicate some

dependence on tether length. However, the mean percent differences in lifetime for

the 50 km tether, in each of the individual effects scenarios, were very close to the

means of the combined data for the 10, 50, and 125 km tethers. Hence, we made the

simplifying assumption that results for a 50 km tether are indicative of those for all

tether lengths from 10 km to 125 km. Table 5 shows, for each of the three tether

lengths, the results of using Eqs. (94) and (95) to compare lifetimes obtained using the

50 km tether's mean percent difference with those occurring in the maximum and

minimum percent difference cases. Clearly, using the 50 km tether's mean percent

difference as a correction factor between the standard and non-standard cases, in this

scenario, will yield acceptable approximations for the lifetime of any length tether (10-

125 km). Tables 6 and 7 show the results of performing the same procedure on

results obtained in the argument of perigee and true anomaly individual effects

scenarios.
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Table 5. Error limits using 50 km mean percent difference, i = 80 vs. i = 28.5°

Tether Length Max Value Error Min Value Error

(km) (%) (%)

10 -9.84 7.15

50 -9.48 6.84

125 -10.91 5.84

Table 6. Error limits using 50 km mean percent difference, w = 90 * vs. c = 0.

Tether Length Max Value Error Min Value Error

(kin) (%) (%)

10 -4.22 2.85

50 -5.14 2.85

125 -11.25 2.46

Table 7. Error limits using 50 km mean percent difference, v = 180 vs. v = 0.

Tether Length Max Value Error Min Value Error

(km) (%) (%)

10 -9.60 23.00

50 -9.60 28.41

125 -10.14 89.92
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With the exception of the true anomaly scenario, the tables on the previous

page show that using the 50 km tether's mean percent difference as a lifetime

correction factor yields acceptable results. For the true anomaly scenario, Figure 45

shows that the largest percent differences, for each of the tether lengths, occur when

the systems originate in orbits with R. = 6578.137 km. If this radius of perigee is

eliminated from the analysis, the largest percent difference, including the 125 km

tether, is approximately -24%, for which the Min Value Error is only 18.9%. We also

note that with a 6578.137 km initial perigee radius, the maximum orbital lifetime for a

10 km tether is approximately seven hours, and the maximum lifetime for a 125 km

tether is less than three hours. Hence, we see that although the percent differences

between the predicted and actual lifetimes may be large in these cases, the magnitude

differences are rather small. We can tolerate this type of error, and also note that it

only occurs for systems originating in orbits with relatively small initial perigee radii.

Based on these results, we continue to assume that results for a 50 km tether

are indicative of those for all tethers. This allows us to use data generated for just

one length in deriving lifetime correction factors. We demonstrate the accuracy of

this approach later in this Chapter.

Next, we turn our attention to the problem of devising some method to

account for the effects of the nearly endless possible combinations of initial orbit

inclination, argument of perigee, and true anomaly. As before, our objective is to find

some way to predict adequately the orbital lifetimes of groups of possible cases.
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Figure 47 shows the variation of orbital lifetimes of a 50 km tether with

variations in initial true anomaly. Each point in the figure is the average percent

difference between the 28 lifetime prediction curve data points for a particular (ca, v)

(non-standard) scenario and the 28 lifetime prediction curve data points for the

w = v = 0 (standard) scenario. Hence, 1008 EPM-generated orbital lifetimes were

used to create the figure. Initial orbit inclination was 28.5 * in each case. The percent

differences were calculated from

Lifetime Difference(%) -- __al - ,-,,-0 x 100 (96)

Because the Earth and atmosphere models are symmetric about the equatorial

plane, effects of initial arguments of perigee between 180 * and 360 * will be identical

to those occurring between 0 * and 180". Hence, Figure 47 only shows data for initial

arguments of perigee between 0* and 135 *.

When the initial true anomaly is zero, Figure 47 clearly shows the effect of tht;

initial argument of perigee on orbital lifetimes. We see that the average percent

difference in lifetime, when w = 45 *, v = 0 *, is larger than the ( = v = 0

difference. This results because the 45 * situation places perigee at a more northerly

latitude, and hence higher altitude, than the 0* scenario. The same is true of the

S= 90 *, v = 0 scenario as compared to the w = 45', v = 0 scenario. The

average percent difference in the w = 135 *, v = 0 * scenario is less than that of the

S= 90, v = 0' scenario, because the altitude of perigee is less than that of the

S= 90 ° scenario. The average percent difference in the w = 135 scenario is less
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Figure 47. Effect of initial true anomaly on lifetime (i = 28.5 ).

than that of the ca = 450 scenario, because the system is initially southbound, and will

cross the equator, where the Earth's radius is largest, sooner than in the ( = 45

scenario. The ca = 1800 scenario would be identical to the ca = 0* scenario.

Similar reasoning can be applied to explain the relationships between the data

points at each true anomaly value. A clearer picture emerges if the average percent

differences in orbital lifetime are plotted as a function of the initial argument of

latitude.

As shown in Figures 48, 49, and 50, this procedure yields families of sinusoidal

curves, with various amplitudes. For each inclination, the values of the extrema are
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the result of two effects: the altitude of perigee, and the system's initial position,

relative to perigee and the equator.

We notice, in Figure 48, that the curves for the i = 10 case are not nearly as

"tri-modal" as curves in the other inclination cases. Rather, the extrema have nearly

identical magnitudes, and the curves are obviously not in-phase. These differences are

due to the fact that changes in perigee altitude, via changes in the initial argument of

perigee, have only a minimal effect in low inclination orbits, since the maximum

latitude attained by these orbits is small. If the i = 10 data were plotted as a

function of true anomaly, the curves would appear to be nearly in-phase, illustrating

the significant effect of initial true anomaly in low inclination scenarios.

S0 . . . .....
S~50 km tether, 1-10O0

E

o -5

IIN

CM -10

43

- -- Avg vhlue

< -20
0 60 120 180 240 300 360 420 480 540

Initial argument of latitude, degrees

Figure 48. Effect of initial argument of latitude on lifetime (i - 10").
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Each Figure also shows an "average value" curve, which is a plot of the average

of the inclination family's curves. For most scenarios shown in the figures, the

individual mean values are generally not too far removed from those of the average

value curve. Hence, a strategy for deriving orbital lifetime correction factors begins to

emerge. We may be able to use the corrections indicated by the average value curves

to approximate the mean percent differences calculated in each i/o/v scenario. In so

doing, the problem's degrees of freedom are reduced by one. That is, a four

dimensional problem - correction factor versus (4 6A v) - is reduced to three

dimensions - correction factor versus (4 U).

The effects of two possible problems must be considered. These are (1) the

dispersion of scenario means about the applicable average value curve, and (2) the

dispersion of individual case differences about their scenario's mean. If a scenario's

mean value differs greatly from the correction factor indicated by the applicable

average value curve, the resulting predicted lifetime values may misrepresent "actual"

lifetime(s) by more than the desired ± 20%. The average value curve's accuracy in

predicting the lifetime of a scenario's mean difference case is calculated from

Avg Value Accuracy(%) = gAvgVlue - ksenatioMen X 100 (97)
gScenario Mean

where eAvg vale is the orbital lifetime predicted using the correction factor indicated by

the average value curve, and gs.,nao M,.n is the lifetime for the mean difference case.

For example, Figure 48 shows that the mean lifetime difference for the 50 km

tether when i = 10%, (a = 0, v = 180" is approximately -15%, while the average
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value curve indicates a correction factor of approximately -9%. The average value

curve's accuracy for the mean difference case in this scenario is then

Avg Value Accuracy 0.91 - 0.85 x 100 = 7.1%
0.85

which means that using the average value curve correction factor of -9% will

misrepresent the lifetime of the mean difference case by only 7.1%, an acceptable

error.

The results of carrying out similar calculations for each mean percent

difference in the i = 10°, i = 28.5 *, and i = 70' scenarios are presented graphically

on the following pages. Figures 51 - 53 show that correction factors resulting from

the average value curves in the 10 *, 28.5 *, and 70 * initial inclination scenarios are

able to predict the mean difference lifetimes, in every scenario, with acceptable

accuracy.

The maximum error in predicting the mean difference lifetimes occurs when

(a = 0 *, v = 180 * in the 10 and 28.50 inclination scenarios. For the i = 70*

scenarios, the maximum prediction error occurs when the initial true anomaly is 270

and 315 *. All of these occurrences are expected however, as these are the scenarios

whose means deviate most from the applicable average value curves. Fortunately,

even the lifetime predictions in these "maximum error" scenarios are well within our

desired accuracy limits. We must now investigate the effects of the dispersion of

individual case differences about their scenario means. Our objective is to determine

if all lifetimes predicted using the average value curves are acceptably accurate.
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Figure 53. Error in predicting mean difference lifetime (i = 70).

The distribution of the 28 case differences about the applicable scenario's

mean will result in predicted lifetimes with errors either greater than or less than the

error in the mean difference lifetime prediction. That is, some cases will have smaller

magnitude percent differences than the scenario's mean, while others will have larger

magnitude percent differences. The smaller differences will be closer to the average

value curve than their scenario's mean, indicating reduced errors in predicted lifetime,

while larger differences will be farther from the average value curve, leading to

increased error in predicted lifetime.

In any given scenario, we may characterize the accuracy of average value curve

correction factors by determining the accuracy of lifetimes predicted in the scenario's
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maximum and minimum percent difference cases. That is, for each i/wlv scenario

tiere will be one case in which the ratio of actual to standard lifetime, S / t is

largest, and one case in which Sf / S,.d, is smallest (recall that 4.-drd is the system's

lifetime when initially i = 28.5 *, ca = v = 0). If the correction factor indicated by the

applibable average value curve yields a predicted lifetime within ± 20% of the actual

value, in both the maximum and minimum difference cases, then the lifetimes of all

cases in the scenario will be predicted with acceptable accuracy.

The w. = 0 scenarios have great potential for large errors in predicted lifetimes,

as we have previously seen that they involve the largest differences between scenario

means and the applicable average value curve. The six figures which follow show, for

w = 0, the relationships between the lifetimes predicted using the average value

curves, and those of the maximum and minimum difference cases. In each figure,

vertical "error bars" indicate the ± 20% accuracy limits about the extremum values. If

the error bars for a scenario do not overlap, or at least intersect, the predicted

lifetime curve, the scenario has one or more cases whose predicted lifetime is outside

the desired ± 20% accuracy limits.

Figures 58 and 59 show that when i = 70* and ca = 0, the lifetimes of all cases

are always adequately predicted using the correction factor specified by the average

value curve. Figures 54 - 57 show that when i = 10%, or i = 28.5, the average value

curves lead to errors in predicted lifetime that are larger than 20%, for the minimum

difference cases in several scenarios. The predicted lifetimes are always sufficiently

accurate in the maximum difference cases. In the large majority of scenarios, using
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the average value curve yields predicted lifetimes closer to the actual values than

would be obtained if no correction factor was applied. In only very few instances do

we see scenarios in which lifetimes occurring in the standard scenario (i.e., • I ,

= 1) would have been a better approximation for non-standard lifetimes than applying

a correction factor indicated by the applicable average value curve.

One of the largest prediction errors shown in Figures 54 - 57 occurs in the

minimum difference case, when i = 10, w 0, v = 225 (Figure 55). In this case,

the minimum percent difference, in actual lifetime as compared to the corresponding

standard scenario lifetime, is -38.87%. The average value curve indicates a correction

factor of only -10.79%, leading to an error in predicted lifetime of 45.9%. Figure 54

shows that the lifetime of the maximum difference case is adequately predicted in this

scenario. The question then becomes, which cases, in addition to the minimum

difference case, will have errors greater than 20% in predicted lifetime?

To answer this question, we consider Figure 60, which shows the errors in

predicted lifetimes for all cases in the scenario. Here we see that using the correction

factor indicated by the average value curve results in acceptably accurate lifetime

predictions in all cases except those whose initial perigee radius is 6578.137 km. As

we observed previously, the orbital lifetimes in such cases tend to be small, and those

occurring in this scenario are no exception - the maximum lifetime when R=

6578.137 km is 3.7 hours. Hence we see that although the percent differences are

large, the magnitudes of the prediction errors are small. As we stated previously, this

type of error is acceptable.
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Figure 60. Error in predicted lifetimes (i = 10" ca = 0O, v = 225 ).

Figure 60 also shows the errors in predicted lifetimes which occur if the

standard scenario lifetimes are used, with no correction factor applied. The lifetimes

in 11 of the 28 cases in the scenario are predicted with errors greater than 20%, and

the misrepresented cases are not restricted to those with RP = 6578.137 km (the

actual lifetime in one of these cases is over 31 hours). The largest error is 60.5%, and

the mean of all the errors occurring in the scenario is 20.1%. In comparison, the

maximum prediction error which occurs when the correction factor is applied is 43.2%,

and the mean of the absolute values of all the errors is only 11.1%.

We previously observed, in the "separate effects" investigations described

earlier in this Chapter, that tether length has an effect on errors in predicted lifetimes.
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Specifically, the data show that increased tether lengths lead to increased magnitude

percent differences between non-standard and standard scenario lifetimes.

The results shown in Figure 61 and Figure 62 demonstrate this behavior.

Recall that we previously showed that all predicted lifetimes are within the acceptable

accuracy range for a 50 km tether, when initially i = 70°, (a = 0 (Figure 58 and

Figure 59). The new figures show that, in this scenario, increasing the tether's length

to 100 km results in errors in predicted lifetimes, when v = 90° or 180, of greater

than 20%. We should note, at this point, that although Lhe results cited here are for

discrete values of true anomaly, inclination, and argument of perigee, they are actually

indicative of results in "bands" of values. For example, Figure 61 clearly shows that

the lifetime of the maximum difference case is predicted with greater than 20% error

2.50 100 km tether i= 700 ooo0

2.25

2.00

A 1.75

S1.50

1.25 ... ..

... Prodded1.00 * Maximum

0.75
0 60 120 180 240 300 360

Initial true anomaly, degrees

Figure 61. Predicted lifetime accuracy, max. diff. case (100 km tether, i = 70).
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Figure 62. Predicted lifetime accuracy, min. diff. case (100 km tether, i = 70" ).

in the scenario where a system's initial true anomaly is 90. However, a closer

examination of the plot shows that the downward projected error bars will not

intersect the predicted lifetime curve, for some range of true anomaly values around

90*. Hence, results for the specific scenario with v = 90 are merely indicative of

results in a range of values.

Figure 63 shows the errors in predicted lifetimes for a 100 km tether, in cases

with v = 90*. The figure also shows the errors which would resu!t if the lifetimes of

the 100 km tether, in the standard scenario, were assumed to accurately represent

those in this non-standard scenario. The mean error using this procedure is -38.4%,

with the smallest error being -27.9%, and the largest -51.3%. All lifetimes "predicted"
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Figure 63. Error in predicted lifetimes (100 km tether, i = 70*, w = 0, v = 90).
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using this procedure are more than 20% in error. In contrast, applying the correction

factor indicated by the average value curve, 1.5743, yields, with one exception,

predicted lifetimes within the ± 20% accuracy limits. The maximum error occurs in a

case with R, = 6578.137 km, where the predicted lifetime is 2.7 hours, as compared to

an actual lifetime of 3.5 hours.

Similarly, Figure 64 shows the errors in predicted lifetimes for the same system,

in cases where the initial true anomaly is 180. In this scenario, we see that simply

using the system's uncorrected lifetimes in the standard scenario as approximations for

actual values yields results that are, in all but one case, accurate to within ± 20%.

This situation correlates with the relationship shown in Figure 62, between the

minimum difference case and the predicted lifetime curve, at v = 180 *; the upward

error bar does not intersect the predicted lifetime curve, but it does cross an

imaginary line at 9 / S,,,,rd = 1.0.

Fortunately, the lifetimes predicted by applying the correction factor of 1.1242

are also generally acceptable. The maximum prediction error is 28.5%, in a case

whose actual lifetime is less than 4 hours. The mean of the absolute value of the

errors is 8.02%, as compared to 8.22% if the standard scenario lifetimes, with no

correction factor applied, are used as "predictions".

By studying the results obtained in many other scenarios, we know that the

accuracy of lifetime predictions demonstrated in these cases is typical. In the very

vast majority of observed cases, the correction factor approach derived in this work

yields results that are well within the desired ± 20% accuracy limits. If errors larger
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than 20% occur at all, they most often occur in cases whose initial perigee radius is

6578.137 km. Occasionally, an error of 21% to 22% occurs in longer lifetime cases;

while this violates, technically, our desired accuracy limit of 20%, it is not excessive,

and is certainly within the region of acceptability. Hence, we conclude that the

"averaging approach" derived in this section appears, in the vast majority of cases, to

provide a means of adequately predicting the orbital lifetimes of tethered systems

originating in orbits whose initial inclination, argument of perigee and true anomaly

are non-standard. We will describe a neural network trained to represent the average

value curves in the next section. Additional results demonstrating the performance of

the averaging approach will be presented later in the Chapter.

ANN Representation. Having satisfied ourselves that the "averaging" approach will

yield acceptable results, we turn to generating data to be used in training an orbital

lifetime correction factor network. Our objective is to train an ANN to represent the

"average value curve" for each possible initial orbit inclination. Hence, we have two

independent variables: i, the initial orbit inclination, and U, the initial argument of

latitude. The network's output will be a lifetime correction factor, which is used to

predict the orbital lifetime of a system originating in an orbit whose initial inclination,

argument of perigee, and/or true anomaly are different from 28.5 *, zero, and zero,

respectively.

We define the boundaries of possible initial orbit inclinations to be 0 (i.e.,

equatorial) and 80" (i.e., near polar). Since the argument of latitude is the sum of

the argument of perigee and the true anomaly, we must consider the possible ranges
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of both variables. As we mentioned earlier, results obtained for initial arguments of

perigee between 180 * and 360 0 will be identical to those occurring when w is between

0* and 1800. Initial true anomaly values range from 0 * to 360 *, with no possible

symmetry simplifications. Hence, we see that the possible range of initial arguments

of latitude, U, is 0* to 540 °.

We will attempt to exploit the generalization capabilities of ANNs, to minimize

data generation requirements. We will provide training data in 20 ° inclination

increments, i = 0 *, 20", 40 *, 60", 80 *, and 45 * argument of latitude increments,

U = 0*, 45*, 90 *, ..., 540 *.

To determine argument of perigee and true anomaly values for each argument

of latitude, we use the average value curve for i = 28.5 * (Figure 49). Table 7 shows

the specific (a and v values derived from the average value curve. At each argument

of latitude of interest, an approximate argument of perigee was determined

graphically; the corresponding true anomaly is then the difference between U and 0.

Since there are 13 data points for each of five inclinations, the network

training data set was composed of 65 points. Each point is the average percent

difference between the 28 lifetime prediction curve data points for a particular

(i, c, v) case and the 28 lifetime prediction curve data points for the corresponding

i = 28.50, co = v = 0 case. Hence, 1,848 EPM-generated orbital lifetimes are used

to determine the training data points.

The chosen ANN structure is shown in Figure 65. The feed-forward network

is composed of two linear input neurons, 30 hidden sigmoidal (logistic function)
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Table 8. Argument of perigee and true anomaly data points. (all units degrees)

U W V U Wo V

0 0 0 315 45 270

45 0 45 360 70 290

90 90 0 405 112 293

135 45 90 450 135 315

180 70 110 495 158 337

225 110 115 540 180 360

270 125 145

neurons, and one linear output neuron. As discussed in the Artificial Neural

Networks Chapter, the input data values, i.e., the values of the independent variables,

are scaled to the interval (0,1). The network requires that a scaled argument of

latitude, U', be provided to the first input neuron, and a scaled orbit inclination, i',

be provided to the second input neuron. Exact details of the scaling procedures are

included in Appendix D. The network's output is a lifetime correction factor

percentage, which is the percent difference between the lifetime of interest and the

lifetime of an identical system in an identical size and shape orbit, with i = 28.5 *, and

S= v = 0. The predicted orbital lifetime is calculated using

1 Correction factor(%I(8
Predicted lifetime o + t xc i-28s-,.,0 (98)

where Correction factor is the network's output.
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Figure 65. Orbital lifetime correction factor network structure.

Results. The ANN was trained using the hybrid training approach described in the

Artifical Neural Networks Chapter. Training with the 65 point data set was

continued until the network had learned to represent the mapping at each point with

less than 10% error. Unfortunately, the network interpolated between given data

points very poorly. Hence the training data set was expanded to include data at

argument of latitude points between the original points, which were in 45 increments.

The expanded set of argument of perigee, true anomaly, and argument of latitude

points is shown in Table 9. The expanded data set consisted of 25 points at 5

inclinations, for a total of 125 data points. This number is somewhat misleading, as
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each point is the average percent difference in orbital lifetime between two 28-point

data sets. A total of 3,528 EPM-generated orbital lifetimes were used to obtain the

125 training data values.

Table 9. Argument of perigee and true anomaly data points. (all units degrees)

U WI V U W) V

0 0 0 293 158 135

30 30 0 315 45 270

45 0 45 338 68 270

60 40 20 360 70 290

90 90 0 383 95 288

112 40 72 405 112 293

135 45 90 428 120 308

157 45 112 450 135 315

180 70 110 473 153 320

203 90 113 495 158 337

225 110 115 518 180 338

247 112 135 540 180 360

270 125 145

Training with the expanded data set was continued until the network's

representation error, at each training data point, was less than 10% of the desired

value. The final weights and biases for the trained network are included in

Appendix D.
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Figure 66 shows the trained network's performance at three untrained

inclinations: i = 10 *, 28.5 *, and 70 *. The curves showing the network's output were

generated for the figure using argument of latitude increments of one degree. The

network results were usually well within ± 10% of known data point values, and

interpolation performance was never more than _ 15% away from expected values.

70 .. ...
50 km tether -- Network output

60 v Simulation result

050 1-~ , ji70*

.40 \
0

30

= 10

"-10

0 55 110 165 220 275 330 385 440 495 550

Initial argument of latitude, degrees

Figure 66. Correction factor network performance at untrained inclinations.

Figure 67 shows the three dimensional surface represented by the trained

network. This surface was created by varying the U and i values input to the network

in 2" increments. Each grid point in the figure represents an actual network output

value - i.e., no "fictitious" points were created by the graphing procedure. Hence,
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the figure is an accurate portrayal of the smoothness of the network's representation.

The 125 points composing the training data set are also shown.

Network output
Training data

*1ML

C,

CI 4

Figure 67. Network representation of orbital lifetime correction factors.

Finally, we investigated the network's ability to predict orbital lifetimes in the

"worst case" scenario discussed earlier: 125 km tether, i = 80%, w = 90, v = 180.

As Figure 68 shows, the majority of the 28 orbital lifetimes predicted using a network-

generated correction factor of 1.72381 are within ± 20% of the EPM-generated

values. Specifically, only five predicted lifetimes were more than 20% different from

the corresponding EPM values, and four of these occurred when R. = 6578.137 km.
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The largest error was -41.5%, in a case with a predicted lifetime of 5.35 hours, and an

EPM-generated lifetime of 9.14 hours. A 21.5% error occurred when the tether

originated in a circular orbit of radius 6878.137 km (20.9 days vs. 17.2 days). Although

this difference is slightly above the desired 20% error limit, we note that it is similar to

the 22.6% deviation obtained by Hoots and France'°° in a case with a mean lifetime

of 19.1 days.

20 125 km tether, I-80 -90 W1 80"

A t
--- -2 0 . . .i . . . . . . . . . .... . . ... . .. . . . ... . . . . .. . .. . .. . . . .

_=-2

A * +

~-40 A
* +

-60 + + i=28.50 o-vO case vs. actual
+ A Predicted vs. actual, network correction

-80 . . . . . . .
6550 6600 6650 6700 6750 6800 6850 6900

Initial perigee radius, km

Figure 68. Correction factor network performance in "worst case" scenario.

The mean of the absolute values of the errors in the predicted lifetimes is

14.4%, with an absolute maximum of 41.5%. These statistics compare very favorably

with those of the errors which result if the i = 28.5 *, w = v = 0 (standard) scenario
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lifetimes are used, without correction, as predictions: absolute mean = 46.3%,

absolute maximum = 66.1%, absolute minimum = 29.5%.

Inclination-only Correction Factors. We observe in Figure 66 that typical "average

value" curves are centered at non-zero correction factor values, which are dependent

upon initial orbit inclination. Hence, we can derive a simple relationship to provide an

"average correction factor", as a function of inclination alone. Clearly, this average

correction factor will be a better approximation in low to moderate inclination cases

than it will in high inclination cases.

By finding the mean of the lifetime correction factors, for each of the five

inclinations included in the network training data set, we obtain 5 points which serve

as a basis for curve fitting. The correction factor means are shown in Table 10.

Table 10. Mean orbital lifetime correction factors.

Initial Orbit Inclination, degrees Mean Lifetime Correction Factor, %

0 -9.679

20 -4.129

40 10.521

60 27.479

80 36.578

Figure 69 shows that the variation of the correction factor, as a function of

initial orbit inclination, is sigmoidal.
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Figure 69. Inclination-only orbital lifetime correction factors.

The mean correction factor data in Table 10 was curvefit, using a least squares

procedure. An equation providing a reliable representation of the data is

Mean Correction Factor(%) = a + b i + c il j + d i 3  (99)

where i is the initial orbit inclination, in degrees, a = -9.67656505, b = 0.0476813,

c = 0.0043850397, and d = -0.00040736821.

Figure 70 shows the performance of the inclination-only lifetime correction

factor method in the "worst case" scenario. As expected, this approach does not yield

results as accurate as the correction factor network, but we see that predicted

lifetimes for cases with initial perigee radii greater than or equal to 6728.137 km are



148

acceptable. The mean of the percent errors, which are all negative, is -26.7%; the

maximum is -53.6%, and the minimum is -3.7%.
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Figure 70. Inclination-only correction factor performance in "worst case" scenario.

Postscript. One additional aspect of the orbital lifetime correction factor method

needs to be discussed. It may have occurred to the reader that all of the trairnng data

used here was derived from EPM-generated orbital lifetimes, but the ,-ained

correction factor network provides lifetime correction factors which are applied to

(standard case) lifetimes produced by the orbital lifetime prediction network described

earlier. Since the prediction network provides results which vary in accuracy, as

compared to EPM-generated results, the correction factors derived using EPM results
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may vary significantly from those which would result if, instead, the lifetime prediction

network's output were used as a basis.

Fortunately, this is not the case. Comparing lifetime correction factors derived

using the lifetime prediction network's output, to those obtained using EPM results,

we found that the average error was 0.34%. The maximum error was 6.07%, in a

scenario where the correction factor obtained using EPM results was 0.1877%, and

the correction indicated using network results would have been 0.1991%. Hence, we

observe that although differences exist, they are not significant. This is due to the

averaging process used to obtain the correction factors.

Predicting the Orbital Lifetime of Tether-Trailing Satellites

Having derived a method to predict the orbital lifetime of free tethers, we now

turn our attention to developing a similar procedure for predicting the lifetimes of

satellites trailing a tether.

In this section, we present results showing the effect of upward and downward

deployed tethers on the orbital lifetime of single mass satellites, discuss the accuracy

of single mass orbital lifetime predictions for these systems, and describe an artificial

neural network trained to represent EPM-generated results.

Deployed Tether Effect on Satellite Orbital Lifetime. A deployed tether may have a

profound effect on the orbital lifetime of a single-mass satellite. This type of scenario

will most likely occur when either (1) a deployed subsatellite is released (or broken

free) from an upward- or downward-deployed tether, leaving behind the parent and
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tether, or (2) a subsatellite and tether are released (or broken free) from a parent

vehicle.

The tether's mass may or may not be significant relative to that of an attached

(sub)satellite, but its cross-sectional area will most likely be several times greater than

that of any end-body. For example, a 20 km Kevlar 29 tether's mass is only 90.5 kg,

but its cross-sectional area, assuming a 2 mm diameter, is 40 square meters (20,000 m

(length) x 0.002 m (diameter)). In contrast, a 3 m diameter spherical satellite has a

cross-sectional area of less than 7.1 m. Thus, due to the area difference alone,

aerodynamic drag forces acting on the tether will dwarf those acting on the satellite, if

all other factors are equal. Furthermore, if the tether's mass density is less than that

of the satellite, which is likely, the acceleration due to drag on the tether will also be

much larger than that of the satellite. Of course, the physical distribution of a

deployed tether' mass will affect these results, since there may be significant

variations in atmospheric mass density over the altitudes involved. Differences in drag

coefficients will also have an effect.

Figure 71 shows the effects of both upward and downward-deployed tethers on

the orbital decay of a 250 kg mass, 3 m diameter, spherical satellite. In each case, the

satellite is initially in a 28.5 inclination orbit of radius 6728.137 km. As always, the

tether is initially aligned along the local vertical, orbiting as a rigid rod. We are thus

simulating the orbit evolution of a "parent" satellite trailing an upward- or downward-

deployed tether. The results presented in the figure were obtained using the EPM.
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Figure 71. Effect of deployed tethers on satellite orbital decay.

The figure shows that, in each case, the tether reduced the parent satellite's

orbital lifetime. As we would expect, an upward-deployed tether had less effect than

an equal length downward-deployed tether, due to differences in atmospheric mass

density, and the downward-deployed tethers had a very significant impact. For

example, the downward-deployed 50 km tether reduced the satellite's lifetime by a

ratio of more than 37 to 1 (7 hours vs. 264 hours).

A surprising result occurs in the upward-deployed cases. The figure shows that

a 50 km upward-deployed tether reduced the satellite's lifetime, but not as much

as the 20 km upward-deployed tether. This is the reverse of the result one would
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expect based on aerodynamic drag considerations alone. The explanation for this

situation is found in the initial conditions for each system's center of mass.

As the length of an upward-deployed tether is increased, so too is its mass,

which shifts the system center of mass further above the satellite. Because the entire

system is assumed to initially be orbiting at the parent's angular rate, i.e., the parent

satellite's orbital "mean motion", all points above the parent will be moving faster than

the parent. The parent is assumed to initially be in a circular orbit, and we know that

as orbit radius increases the speed required to attain circular orbit decreases. The

combination of these facts means that all points above the parent are initially moving

at speeds greater than those required for circular orbit at their locations.

The eccentricity vector for the center of mass' initial orbit, which points from

the center of the Earth toward perigee, and has a magnitude equal to the orbit's

eccentricity, may be calculated from'01

1V2 _ R-(E ._V)_ (100)

where R and V are the center of mass' initial position and velocity vectors. Since the

initial velocity is perpendicular to the position vector, and has a magnitude greater

than circular orbit speed, we see that e points in the direction of R. That is, in an

upward-deployed tether scenario, where the system is initially aligned along the local

vertical and orbiting as a rigid rod, the system center of mass is initially located at

perigee of an elliptical orbit, and the perigee radius is greater than the radius of the

parent's initial (circular) orbit. Hence, we see that as the length of an upward
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deployed tether is increased, the size of the center of mass' initial orbit is increased,

leading to a longer orbital lifetime.

For example, the mass of a 20 km, 2 mm diameter (Kevlar 29) tether is 90.5

kg, and the resulting system center of mass location is 2.6574 km above the 250 kg

satellite, which is in a circular orbit of radius 6728.137 km, as in Figure 71. Thus the

perigee radius of the center of mass' initial orbit is 6730.79 km. The initial apogee

radius, R, may be found by calculating the initial orbit's specific mechanical energy, e,

where

V2  P (101)

solving for the major axis length, 2a, and using the relation

R =2a -R (102)a p

Since, by definition, apogee radius is greater than perigee radius, the system's center

of mass will be in a larger initial orbit than the parent satellite. In the example

scenario, the initial apogee radius is 6746.76 km.

The meaning of the upward-deployed results shown in Figure 71 now becomes

clear. In these scenarios, the center of mass is initially in an orbit whose perigee and

apogee radii are larger than the radius of the parent's initial (circular) orbit. This

means the center of mass' initial orbit period is longer, and its altitude is always

greater, than that of the parent's initial orbit. The dissipative effects of aerodynamic

drag on the deployed tether cause the parent to lose altitude quicker than in the

undeployed case, with the calculated lifetime resulting from the competing effects of
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the drag force magnitudes and accelerations, and the size of the initial center of mass'

orbit. Both of these effects result directly from the length of the deployed tether.

Exactly the opposite phenomena occurs in cases with a downward-deployed

tether. The system center of mass, located below the parent satellite, is initially at

apogee of an elliptical orbit, whose perigee radius is even lower. In these scenarios,

the reduced radii combine with the dissipative aerodynamic drag effects to greatly

reduce the system's orbital lifetime. Table 11 lists the perigee and apogee radii, and

the calculated lifetimes, for each case shown in Figure 71.

Table 11. Center of mass initial orbit radii and parent satellite orbital lifetimes.

Scenario Perigee Radius Apogee Radius Orbital Lifetime
(km) (ki) (hrs)

Parent only 6728.137 6728.137 264.2

Parent + 20 km
upward deployed 6730.79 6746.76 73.9

Parent + 50 km
upward deployed 6740.01 6811.89 97.3

Parent + 20 km
downward deployed 6709.56 6725.48 37.2

Parent + 50 km
downward deployed 6645.63 6716.26 7.1

Accuracy of Equivalent Sphere Orbital Lifetime Predictions. Following the approach

utilized in the free tether studies, the EPM was used to investigate the accuracy of

tether-trailing satellite lifetime predictions obtained using equivalent single-mass
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satellites. Terminology used in this section will differ slightly from that of the previous

section: here we will refer to a case in which a subsatellite has been downward

deployed from a parent and released, trailing an "upward-deployed" tether, as a

downward-deployed case; a subsatellite which has been upward deployed from a

parent and released, trailing its tether, will be referred to as an upward-deployed case.

Also unlike the previous section, where we assumed certain initial conditions for the

parent, in these investigations we will calculate the lifetimes of systems released from

identical center of mass initial conditions.

lifetime prediction curve data points were generated for a variety of upward-

and downward-deployed cases, and compared to results obtained for spheres whose

cross-sectional area and mass were equivalent to that of the tethered systems. Errors

in the equivalent sphere results were determined by calculating their percent

difference from the "actual" tethered system lifetimes. That is, the errors in

equivalent sphere lifetimes were calculated from

Error in Lifetime(%) = gEquivSphere gactual X 100 (103)
9.1tuaI

Lifetimes were calculated and compared in 8 different cases, for each of three

tether lengths, assuming both upward and downward deployment. Subsatellite masses

included in the study were 0, 25, 50, 100, 175, 275, 375, and 500 kg, and lifetimes were

calculated using tether lengths of 20, 50, and 100 km. Except for the free tether cases

(subsatellite mass = 0), a subsatellite diameter of 3 meters was assumed.
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Figure 72 shows that errors in downward-deployed cases involving a 50 km

tether were usually within ± 20%, over the entire range of subsatellite masses.

Figure 73 shows that errors occurring in cases with a 100 km tether were similar,

except for small subsatellite masses. Errors in cases with a 20 km tether fell within

the range +8.1% to -14.1%. Data was also generated assuming 1 m, 2 m and 5 m

diameters, for subsatellite masses of 50, 250 and 500 kg; the resulting errors in

lifetime were either within the error bands obtained for the 3 m diameter cases, or

outside the limits by less than 5 percentage points.
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Figure 72. Error in equivalent sphere lifetime, downward-deployed 50 km cases.
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Figure 73. Error in equivalent sphere lifetime, downward-deployed 100 km cases.

Calculated errors were much larger in upward-deployed cases. As shown in

Figure 74, errors in cases involving a 20 km tether ranged from a minimum of near

2%, to a maximum of over 30%. With a 50 km tether, Figure 75 shows that the

minimum error exceeded 20% for subsatellite masses larger than approximately 120

kg. The average error in equivalent sphere lifetime was greater than 60% with a 500

kg subsatellite, and the maximum error was greater than 20% for all subsatellite

masses. Figure 76 shows that average errors in the 100 km upward-deployed cases

ranged from a low of approximately 30% to a high near 175%. Minimum error

exceeded 20% for subsatellites larger than approximately 20 kg, and the maximum

error was over 400% in cases involving a 500 kg subsatellite. Results were also
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Figure 75. Error in equivalent sphere orbital lifetime, upward-deployed 50 km cases.
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Figure 76. Error in equivalent sphere orbital lifetime, upward-deployed 100 km cases.

obtained for subsatellite masses of 50, 250, and 500 kg, with diameters of 1, 2, and 5

meters, and it was found, as in the downward-deployed cases, that errors were either

within the error limits established by the 3 m diameter cases, or outside those

boundaries by only a few percentage points.

A pattern is obvious in these results. It appears that equivalent sphere orbital

lifetime results are acceptably accurate in many downward-deployed cases. (Notable

exceptions include 100 km downward-deployed cases, with subsatellite masses smaller

than approximately 150 kg.) With downward-deployed systems, increased tether

length appears to cause significantly increased errors in predicted lifetimes in only the

smallest mass subsatellite cases.
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Conversely, errors in the upward-deployed cases are rarely tolerable. In fact,

the only cases with maximum errors less than 20% were those 20 km cases with

subsatellites smaller than approximately 75 kg. Increased tether length drastically

increased the errors which occurred with upward-deployed subsatellites of any mass.

There is, of course, a logical explanation for this behavior. In the upward-

deployed cases, a system's center of mass is located below the subsatellite, but a

significant portion of the tether hangs below the center of mass location. As the

system's orbit decays, the lower portions of the tether encounter the more dense

regions of the atmosphere first, quickly dissipating orbit energy. However, an

equivalent sphere, initially released at the system's center of mass location, may be

many kilometers above the bottom of the tether, and hence will not dissipate orbital

energy as quickly.

For example, the center of mass of an upward-deployed system consisting of a

100 km tether and a 250 kg subsatellite is only 32.3 km below the subsatellite, i.e.,

67.7 km above the free end of the tether. Although the equivalent sphere's cross-

sectional area equals that of the tether and subsatellite, it will not encounter the more

dense portions of the atmosphere as early as the free end of the tetlhtr, and hence

will not decay as quickly, leading to a large difference in actual and "equivalent"

lifetimes.

Conversely, if the same system were downward-deployed, the equivalent sphere

would be 32.3 km above the subsatellite, and would encounter the more dense

portions of the atmosphere sooner than the upper 67.7 km of tether. Hence the
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sphere would encounter the more dense portions of the atmosphere later than the

subsatellite and the lowest portions of the tether, but before the tether's (longer)

upper portion. This is apparently a fairly good tradeoff, as the results indicate that

errors essentially reach a limit, near -25%, as subsatellite mass increases.

Given these findings, we chose to restrict this effort to training a neural

network to predict the orbital lifetimes of upward-deployed systems. The large errors

which occurred in the scenarios examined earlier indicate that single-mass orbital

lifetime prediction techniques will be extremely unreliable for these types of systems..

Predicting the Orbital Lifetime of Upward-Deployed Tether-Trailing Satellites. The

initial values of five independent variables dictate the orbital lifetime of tether-trailing

satellites. They are: (1) the CM orbit's initial perigee radius, (2) the CM orbit's

initial apogee radius, (3) the tether's length, (4) the subsatellite's mass, and (5) the

subsatellite's diameter. Our objective is to train an artificial neural network to predict

adequately the orbital lifetimes of upward-deployed tether-trailing satellites. In

actuality, additional variables, for which we have previously made assumptions and

provisions, will affect the lifetimes of these systems. These include variables such as

the tether's diameter and initial orientation, the time of day and year, etc.. In this

analysis, we will continue to apply all the simplifying restrictions and assumptions

stated previously. The most important are that (1) the tether is initially aligned along

the local vertical, unstretched, orbiting as a rigid rod, and (2) the system's CM is

initially in an orbit whose inclination is 28.5 *, and whose argument of perigee and true

anomaly are zero.
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As in the free tether scenarios, plotting the orbital lifetimes of tether-trailing

satellites versus a factor involving the initial CM orbit's size and shape (RP, + (Ro-R) /

(1+e)), on a semi-log scale, yields fairly linear curves which may be easily read.

Figure 77 shows the orbital lifetime prediction curves for a system consisting of

a 500 kg, 3 m subsatellite, upward deployed on either a 50 km or 75 km tether. The

figure clearly shows that increased tether length decreases orbital lifetime. This

results because the portion of the longer tether below the system's CM reaches the

more dense regions of the atmosphere quicker than similar portions of the shorter

one.

A Rp-6578 km 50 km tether
•V Rp,6628 km - - - - 75 km tether

? 2 7 Rp-6678 km
V Rp-6728 km

"0 102 # Rp=6778 km
- Rp=6828 km
* Rp-6878 km

E
.9 2

101

E lo

2

100"
1Upward deployed 3 m 500 kg subsatellite

6550 6600 6650 6700 6750 6800 6850 6900
Rp + (Ra-Rp) / (1 +e)

Figure 77. Effect of tether length on orbital lifetime.
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For example, the lifetime of the 50 km system, when its CM is originally in a

circular orbit of radius 6878.137 km, is 781 hours (32.5 days). If the 50 km tether is

replaced by a 75 km tether, the lifetime is only 543 hours (22.6 days). The 50 km

tether has a mass of 226 kg, and the resulting CM location is 7.8 km below the

subsatellite; this means that a tether portion 42.4 km long extends below the system

CM. In contrast, the 75 km tether has a mass of 339.3 kg, leading to a system CM

location 15.2 km below the subsatellite. Hence, a tether portion 59.8 km long extends

below the system CM in this case. We expect the increased lower portion length to

have the most effect at low altitudes, and the results shown in the figure support this

observation: the length-induced percent differences in lifetimes increase as the initial

radius of perigee decreases.

Figure 78 shows the effect of increasing the mass of an upward-deployed

subsatellite. In this scenario, a 250 kg or 500 kg subsatellite, 3 m in diameter, is

deployed upward, trailing a 50 km tether. The figure shows that increased subsatellite

mass leaad Lo increased orbital lifetime. This is the result of two competing influences.

First, doubling the subsatellite's mass, without changing its diameter, will halve its

ballistic coefficient, CDA / M. This means the acceleration due to drag acting on the

subsatellite is also halved, which will reduce the rate of specific orbital energy

dissipation. Second, increasing the subsatellite's mass moves the system CM "higher"

along the tether. For example, the CM of the system with a 250 kg subsatellite is

located 11.87 km below the subsatellite; with the 500 kg subsatellite it is 7.78 km

below. Since lifetimes are calculated using initial CM orbit conditions, a CM location
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Figure 78. Effect of subsatellite mass on orbital lifetime.

closer to the top of the system (i.e., "higher") will lead to earlier dissipation of orbital

energy, since the portions of the tether below the CM reach further down into the

atmosphere. However, in the cases presented here, changes in subsatellite mass do

not significantly alter the position of the system's CM, and the reduced subsatellite

ballistic coefficient is clearly the dominant influence.

By comparing lifetime prediction curve data generated for numerous scenarios,

it becomes apparent that variations in a subsatellite's diameter cause only small

changes in orbital lifetimes, particularly when the trailing tether is longer than

approximately 50 km. Since the realistic range of subsatellite diameters includes any
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dimension up to approximately 5 meters, we compared the EPM-generated lifetimes of

1, 2, 3, and 5 m subsatellites, having masses of 50, 250, or 500 kg, trailing a 20, 50, or

100 km tether. Table 12 shows, for each tether length and all three subsatellite

masses, the absolute value of the maximum percent difference in lifetimes of the 1, 2,

or 5 m cases, as compared to results for the corresponding 3 m diameter case. That

is, the percent differences were calculated using

Lifetime Difference(%) - Id-?,M - gLd-3,. X 100 (104)
gLLd-3, M

where L is the length of the trailing tether, d is the subsatellite diameter, and M is the

subsatellite mass. Hence the results shown in the table are the result of comparing

the lifetime prediction curve data from 36 scenarios: four subsatellite diameters, in

combination with each of three subsatellite masses, with any of three tether lengths.

Since each scenario includes 28 data points, the results shown in the table embody the

relationships between a total of 1008 EPM-generated orbital lifetimes.

Table 12. Maximum lifetime differences caused by subsatellite diameter variations.

Tether Length Maximum Lifetime Difference

(km) (%)

20 18.1

50 6.9

100 1.3
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As shown in Table 13, relatively large lifetime differences occurfed in the 20

km scenarios involving all three subsatellite masses. The largest differences from the

applicable 3 m results occurred in scenarios with a 5 m diameter subsatellite. This is

due to the fact that the cross-sectional area of a 5 m (spherical) subsatellite (19.6 M 2)

is nearly half that of a 20 km, 2 mm tether (40 M2). In contrast, the areas of the

smaller subsatellites are never more than 20% that of the tether (17.7% for a 3 m

subsatellite). Thus, in the 5 m cases, the drag forces acting on the subsatellite are

more significant than in the smaller diameter scenarios.

Table 13. Maximum lifetime differences with 20 km tether.

Subsatellite Mass
Subsatellite (kg)
Diameter

(m) 50 250 500

1 14.63 12.3 12.4

2 10.0 8.1 7.4

5 18.1 18.1 18.0

Since the trained ANN will be accurate to within ± 10% at each training data

point, we can determine the agreement which must exist between different diameter

scenarios to insure ± 20% accuracy in the network's predictions. That is, we can

tolerate any predicted lifetime within the range 9iC = 1.20 9.,. to 0.8 Zca.

Assuming a maximum network representation error of ± 10%, we see that the

maximum tolerable difference due to diameter affects is + 9.1% or - 11.1%
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(1.1 x 1.091 = 1.20, 0.9 x 0.889 = 0.8). Clearly, very few of the diameter - mass

scenarios listed in Table 13 have even the possibility of being adequately represented

by the trained ANN.

We conclude that for the subsatellite masses of interest, lifetimes obtained

using a "reference diameter" of 3 m may be reliably used only in cases involving tether

lengths of at least 50 km, to predict the orbital lifetimes of systems involving any

subsatellite diameter up to 5 m. Clearly, the subsatellite diameter must be a

contributing factor used in the prediction of the lifetimes of systems with shorter

tethers, to obtain final accuracies within the desired limits.

As a result, we choose to train a neural network to predict the orbital lifetimes

of upward-deployed systems involving tether lengths of at least 50 km. By making this

choice, the number of independent variables is limited to just four: the CM orbit's

initial radius of perigee, the initial CM orbit's size and shape factor, the length of the

trailing tether, and the mass of the upward-deployed subsatellite. We also note that

the end product, a trained artificial neural network, will provide results for systems

whose "equivalent sphere" (i.e., single-mass) lifetime predictions are particularly

unreliable (cf. Figures 74, 75, and 76).

Neural Network Representation. A feed-forward ANN, which mirrors the network

structure previously defined and used, was trained to represent a large set of EPM-

generated lifetime data for upward-deployed systems. Unlike previous networks, 100

hidden layer neurons were required to obtain the desired t 10% prediction accuracy.
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The network's structure is shown in Figure 79. It is composed of four linear

input neurons, 100 hidden sigmoidal (logistic function) neurons, and one linear output

neuron. Each of the four independent variables identified in the previous section

(initial radius of perigee, initial orbit size and shape factor, tether length, subsatellite

mass) were scaled to the range (0,1), and input to the network. The network's output

is the system's predicted orbital lifetime, in units of hours. Appendix E contains exact

details of the input data scaling procedures, and the weights and biases for the trained

network.

RP/ fac' L! M'

(100 hidden neurons)

Lifetime, hours

Figure 79. Upward-deployed tether-trailing satellite lifetime prediction network.

The training data set consisted of the lifetime prediction curve data for eight

different subsatellite masses, trailing a tether of any of three lengths. Specifically, the
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subsatellite masses included were 0, 25, 50, 100, 175, 275, 375, and 500 kg, and the

three tether lengths were 50, 75, and 100 km. Hence the training data contained

results obtained in 24 different subsatellite mass / tether length scenarios. Each

scenario consists of 28 lifetime prediction curve data points, which means a total of

672 EPM-generated orbital lifetimes were used to train the network. The EPM

results were obtained assuming a subsatellite diameter of 3 m, except in the zero

(subsatellite) mass cases, when the diameter was set to zero.

The network was trained using the hybrid training approach derived earlier in

this work. Training was continued until the network had learned to represent the

mapping at each point with less than 10% error. The network's generalization

accuracy was tested by comparing its output with EPM-generated data for tether

lengths, subsatellite masses, and perigee and/or apogee radii not included in the

training data. In most cases, the trained network's accuracy was significantly better

than the 20% goal, and the maximum error observed in any case was less than 15%.

Figure 80 shows the network's output and EPM-generated data for a system

composed of a 200 kg, 3 m upward-deployed subsatellite, trailing a 60 km tether.

With the exception of the diameter, this case demonstrates the network's performance

in a case that is only encompassed by the training data - the network was not shown

data for this tether length or subsatellite mass during training. The network output

shown in the figure was generated by varying the perigee and apogee radii in 25 km

increments.
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Figure 80. Network output and orbital lifetime data for 200 kg, 60 km system.

The accuracy and "smoothness" of the network's output in this case are typical.

Figure 81 shows the errors in predicted versus calculated lifetimes. The maximum

magnitude percent error in the network's predictions was 7.3%, and the mean of the

absolute values of the errors was only 2.1%.

To further demonstrate the smoothness of the trained network's

representation, Figure 82 shows, for systems including a 60 km tether and having an

initial perigee radius of 6578.137 km, the variation in predicted lifetime with changes

in both subsatellite mass and the initial CM orbit's apogee radius. In agreement with

the trends identified earlier (Figure 78), we see that orbital lifetime increases with
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Figure 81. Network lifetime prediction accuracy, 200 kg, 60 km system.
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Figure 82. Predicted lifetime variations due to changes in R. and subsateilite mass.
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increases in apogee radius and/or subsatellite mass. The three-dimensional surface in

Figure 82 was created by varying the CM orbit's initial apogee radius in 5 km

increments, and varying the subsatellite's mass in increments of 10 kg. Hence, each

grid point in the figure represents an actual network output value - i.e., there were

no fictitious points created in the graphing procedure.

Figure 83 shows a similar surface, created by varying the CM orbit's initial

apogee radius in 5 km increments, and varying the length of the trailing tether

attached to a 300 kg subsatellite in 2 km increments. The initial perigee radius was

6578.137 km in all cases. In agreement with the trends identified earlier (Figure 77),

we see that orbital lifetime increases with increases in the initial CM orbit's apogee

radius, and/or docreases in trailing tether length. As before, each grid point in the

figure represents an actual network output value, demonstrating the smoothness of

the network's interpolation.

Based on these results, and those obtained in many other "interpolation" test

cases, we believe the trained network can adequately predict the orbital lifetime of

any upward-deployed tether-trailing system, within the following boundaries:

subsatellite mass no greater than 500 kg, subsatellite diameter no greater than 5 m,

tether length between 50 and 100 km, inclusive, initial CM orbit perigee radius no less

than 6578.137 km, and initial CM orbit apogee radius no greater than 6878.137 km.

Additionally, the results derived here require that the system initially be located at

perigee, and that perigee be located at the ascending node of an orbit with an

inclination of 28.5'.
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In the next section of this Chapter, we will demonstrate the accuracy of

lifetime predictions provided by the network in a large number of randomly chosen

cases. We will also show how the network may be used to predict the orbital lifetime

of systems originating in orbits whose inclinations, arguments of perigee and true

anomalies are not 28.5 , zero, and zero, respectively.

300 kg subsatellite, Rp = 6578.137 km

Figure 83. Predicted lifetime variations due to changes in R. and tether length.

Test Case Results

In this section, the utility and accuracy of the orbital lifetime prediction

methods derived in this research project are demonstrated. Results of using the

derived methods to predict orbital lifetimes in a total of 90 cases are presented: 45
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free tether cases, and 45 (upward-deployed) tether-trailing satellite cases. In each

case, some or all of the initial conditions and system physical characteristics were

determined randomly. The results obtained in the test cases demonstrate

(1) the accuracy of EPM results as compared to the MBM;

(2) the accuracy of network lifetime predictions as compared to the
MBM (i = 28.5 *, ca = v = 0 cases);

(3) the accuracy of lifetime predictions obtained using inclination-only

correction factors, as compared to the MBM (i # 28.5 * cases);

(4) the accuracy of lifetime predictions obtained using correction factor

network results, as compared to the MBM ((a, v # 0 cases).

For each type of system, results obtained in three different scenarios are

presented. The constants and variables in each scenario are listed below.

Free tether scenarios

(1) i = 28.5", ( = v = 0, fixed; RP, Ro, tether length, variable;

(10 cases).

(2) i = 28.5 fixed; w, v, RP, Ro, tether length, variable; (15 cases).

(3) i, w, v, R,, Ro, tether length, variable; (20 cases).

Tether-trailing satellite scenarios

(1) i = 28.5, w = v = 0, fixed; R,, R., tether length, subsatellite

mass, subsatellite diameter, variable; (10 cases).

(2) i = 28.5 fixed; (, v, RP, R., tether length, subsatellite mass,
subsatellite diameter, variable; (15 cases).

(3) i, (a, v, RP, R., tether length, subsatellite mass, subsatellite
diameter, variable; (20 cases).

In each case, a random number generator, which provided random numbers

between 0 and 1, inclusive, from a uniform distribution, was used to determine initial

conditions, and in many cases, system physical dimensions. The random numbers,
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once obtained, were mapped to the appropriate magnitude range for the variable of

interest.

For example, the initial CM orbit's perigee radius, R,, was always a randomly

determined variable. To map values between 0 and 1 to the acceptable range,

6578.137 to 6878.137 (km), the operation

R = ran X 300 + 6578.137

was performed, where ran is a generator-provided random number. To use values

between 0 and 1 to determine subsatellite diameter, with any value up to 5 (meters)

being acceptable, ran is simply multiplied by 5.0. Similar procedures were used to

determine values for each variable in the various scenarios.

Results with Free Tethers, Standard Scenario. Results obtained for free tethers

originating in standard scenario orbits (i = 28.5 *, ca = v = 0) are shown in Table 14.

In this table, the units on RP, fac, and tether length are kilometers, the units on

lifetimes are hours, and the errors are in percent, calculated from

Lifetime error(%) - g_ - MBM x 100 (105)
9MBM

Here, 9 is the orbital lifetime obtained using either the EPM, or the free tether

lifetime prediction network, and tI mBm is the orbital lifetime calculated using the multi-

body model. For the 10 test cases, the mean of the errors in the EPM lifetimes is

-1.28%, with a maximum of -5.08%, and the mean of the errors in the network-

predicted lifetimes is -2.98%, with a maximum of -8.37%.
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Clearly, all results were well within the desired _t 20% error range, and we

note that the 10 random cases included tether lengths ranging from slightly more than

15 km to over 120 kin, with lifetimes varying from slightly less than 3 hours to nearly 7

days.

Table 14. Prediction method performance with free tethers, standard scenario.

MBM EPM EPM Net Net

RP fac Length life Life Error life Error

6750.30 6766.07 31.46 40.64 40.53 -0.27 40.65 0.02

6725.23 6840.62 18.34 60.48 60.29 -0.31 58.80 -2.78

6649.36 6745.73 68.62 9.57 9.47 -1.04 9.20 -3.87

6591.36 6832.64 15.48 7.53 7.47 -0.80 6.90 -8.37

6580.73 6728.82 35.44 2.90 2.86 -1.38 2.87 -1.03

6629.49 6681.76 120.88 2.95 2.80 -5.08 2.86 -3.05

6629.74 6793.24 43.40 11.26 11.15 -0.98 10.91 -3.11

6694.69 6736.31 121.30 12.61 12.42 -1.51 12.03 -4.60

6731.71 6788.89 109.90 34.32 34.05 -0.79 33.53 -2.30

6822.18 6848.48 70.09 160.98 159.94 -0.65 159.84 -0.71

"lAits with Free Tethers. i = 28.5 0. Results obtained for free tethers originating in

nonstandard orbits with a 28.5 inclination are shown in Table 16. Table 15 shows

the randomly chosen initial conditions and tether length in each case. Errors in

lifetime are listed in percent, calculated as shown in the previous section. The U-i
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Table 15. Initial conditions and tether length, free tethers, i = 28.5 °.

Case RP, kin fac, km c, deg v, deg Length, km

1 6605.62 6799.22 12.60 324.51 22.98

2 6628.54 6630.85 6.57 40.78 51.02

3 6665.86 6833.78 38.25 115.89 113.68

4 6629.37 6790.19 149.76 6.60 103.65

5 6851.71 6872.63 27.18 4.17 43.75

6 6613.73 6744.35 35.89 353.32 118.26

7 6582.&2 6814.71 175.18 101.43 84.10

8 6635.89 6720.90 1.85 94.37 31.52

9 6676.93 6853.95 124.87 100.06 89.70

10 6668.80 6815.80 34.11 78.14 113.93

11 6625.12 6714.84 123.91 130.52 111.18

12 6620.71 6747.33 28.39 81.77 106.90

13 6843.47 6863.95 83.64 347.70 101.88

14 6592.12 6718.55 64.66 298.98 13.15

15 6591.46 6617.42 149.38 271.39 11.95

correction factors are also in percent, the units used by the U-i correction factor

network. (Predicted lifetimes were calculated using Eq. (98), page 140.)

As shown in Table 16, results obtained with the EPM agree quite well with

those obtained using the MBM. The mean percent error in the EPM results is only

-4.48%, with a maximum percent error of -12.55%. Although not shv'.,., in the

tables, the mean percent error in the uncorrected network-generated lifetimes,
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compared to the MBM results, is -7.27%, with a maximum of -15.2%. Hence, we see

that prediction errors occurring when i = 28.5 *, with no correction factors applied,

are acceptably small. This is because the variations in orbital lifetimes caused by

nonzero argument of perigee and true anomaly values are relatively small at this

inclination.

As shown in Table 16, applying correction factors provided by the U-i

correction factor network ("U-i Corr.") to lifetimes predicted by the standard scenario

Table 16. Prediction method performance with free tethers, i = 28.5 *.

MBM EPM EPM Net U-i CorrNet CorrNet

Case Life Life Error life Corr. Life Error

1 7.37 7.32 -0.68 7.77 -5.47 7.35 -0.27

2 2.30 2.24 -2.61 2.15 4.46 2.25 -2.17

3 18.59 18.40 -1.02 19.55 -1.09 19.34 4.03

4 8.54 8.39 -1.76 8.13 -1.48 8.01 -6.21

5 271.81 269.01 -1.03 264.59 2.67 271.65 -0.06

6 4.21 4.05 -3.80 4.10 -2.63 3.99 -5.23

7 4.70 4.11 -12.55 4.07 3.70 4.22 -10.21

8 7.48 7.15 -4.41 6.77 7.55 7.28 -2.67

9 28.74 28.21 -1.84 29.51 -0.68 29.31 1.98

10 20.47 18.98 -7.28 17.90 6.62 19.09 -6.74

11 4.60 4.03 -12.39 4.08 2.49 4.18 -9.13

12 5.96 5.39 -9.56 5.05 6.80 5.39 -9.56

13 224.41 217.61 -3.03 211.24 4.36 220.45 -1.76

14 3.05 3.01 -1.31 3.32 -5.60 3.13 2.62

15 1.25 1.20 -4.00 1.20 2.68 1.23 -1.60
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network ("Net Life") yields the lifetimes shown in the "CorrNet Life" column. This

procedure reduced the mean percent error in lifetime (i.e., mean of the "CorrNet

Error" column), to just -4.28%, with a maximum of -10.21%. The network-generated

correction factors greatly improved the prediction network's results m this scenario.

Clearly, the EPM provided reliable results in each of the 15 nonstandard cases,

and the predictions of the (standard scenario) free tether lifetime prediction network,

with and without assistance from the U-i correction factor network, yielded results

well within the desired ± 20% error tolerance. We again note the wide range of

results and physical characteristics included in the test cases: lifetimes ranged from

little more than one hour, to over 11 days, and tether lengths ranged from less than

12 km to over 118 km.

Results with Free Tethers, All Orbital Elements Variable. Results obtained for

random length free tethers originating in randomly chosen orbits, within the

constraints on the models and prediction methods, are presented in Table 17 and

Table 18. Table 17 lists the randomly chosen initial conditions, tether length, MBM

lifetime, EPM lifetime, and EPM error in each case. Table 18 lists the lifetimes and

errors resulting from using correction factors provided by the U-i correction factor

network ("CNetl Life", "CNetl Error") and the inclination-only procedure ("CNet2

Life", "CNet2 Error"). As before, lifetimes are in hours, and the errors in calculated

and predicted lifetimes, as compared to results obtained with the MBM, are shown in

percent. The units on RP, fac, and tether length are kilometers, and the angular

orbital elements are in units of degrees.
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Table 17. Initial conditions, tether length, MBM life, and EPM accuracy, free tethers.

MBM EPM EPM
Case R, fac i ( v Length Life Life Error

1 6764.96 6796.33 72.79 167.95 233.46 97.98 70.44 68.65 -2.54

2 6634.03 6744.75 19.94 124.75 218.57 55.23 6.53 6.48 -0.77

3 6603.88 6688.77 78.12 8.02 231.17 41.14 4.93 4.85 -1.62

4 6795.93 6859.92 50.63 87.03 49.38 21.87 170.78 169.42 -0.80

5 6710.50 6776.23 38.64 5.39 34.76 69.89 29.66 29.36 -1.01

6 6692.14 6840.40 45.55 124.33 296.95 53.38 43.65 43.13 -1.19

7 6655.03 6730.32 76.17 138.72 81.75 113.96 9.95 9.59 -3.62

8 6621.97 6674.29 55.44 9.52 160.64 24.10 3.85 3.80 -1.30

9 6638.02 6819.61 70.17 99.68 34.10 57.05 19.25 19.22 -0.16

10 6608.04 6801.27 68.15 137.41 90.00 100.19 8.49 8.10 -4.59

11 6687.47 6771.70 34.19 141.10 272.91 34.58 22.75 22.56 -0.84

12 6633.97 6838.91 24.01 107.51 192.61 36.63 13.94 13.89 -0.36

13 6751.99 6801.52 9.66 164.37 257.08 15.09 54.55 54.20 -0.64

14 6748.55 6768.68 78.58 11.99 300.39 93.03 48.81 48.76 -0.10

15 6655.42 6679.17 30.27 148.69 323.62 52.65 6.14 5.95 -3.09

16 6599.61 6827.12 6.79 124.29 298.18 68.66 6.07 5.90 -2.80

17 6579.32 6788.85 28.15 129.67 175.49 76.79 3.17 2.83 -10.73

18 6617.67 6735.50 26.11 20.94 54.89 51.33 6.03 5.82 -3.48

19 6843.95 6849.04 2.51 158.68 225.11 107.09 169.52 167.92 -0.94

20 6680.72 6857.85 4.32 110.37 260.99 19.01 32.17 32.05 -0.37

The mean percent error in lifetimes calculated using the EPM, as compared to

those obtained with the MBM (i.e., mean of "EPM Error", Table 17), is only -2.05%,
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and the maximum percent error was -10.73%. Clearly, the EPM is able to provide

very acceptable results, as compared to those obtained using the MBM, for free

tethers of any length, originating in any orbit within the constraints of the models.

Table 18. Prediction method accuracies, free tethers.

Net U-i CNetl CNetl i-only CNet2 CNet2
Case Life Corr. Life Error Corr. Life Error

1 53.48 30.99 70.05 -0.55 34.91 72.15 2.43

2 7.74 -8.42 7.09 8.58 -4.17 7.42 13.63

3 3.09 52.45 4.71 -4.46 36.36 4.21 -14.60

4 145.79 20.83 176.16 3.15 19.85 174.73 2.31

5 26.68 9.57 29.23 -1.45 9.36 29.18 -1.62

6 36.79 20.94 44.49 1.92 15.40 42.46 -2.73

7 7.03 30.04 9.14 -8.14 35.97 9.56 -3.92

8 3.47 12.30 3.90 1.30 23.90 4.30 11.69

9 14.28 30.47 18.63 -3.22 33.79 19.11 -0.73

10 6.00 32.36 7.94 -6.48 32.76 7.97 -6.12

11 21.09 6.53 22.47 -1.23 5.65 22.28 -2.07

12 15.73 -2.08 15.40 10.47 -1.79 15.45 10.83

13 57.87 -8.51 52.95 -2.93 -8.31 53.06 -2.73

14 35.39 34.28 47.52 -2.64 36.41 48.28 -1.09

15 5.32 5.12 5.59 -8.96 2.57 5.46 -11.07

16 7.08 -9.55 6.40 5.44 -8.95 6.45 6.26

17 3.29 0.30 3.30 4.10 1.02 3.32 4.73

18 5.67 5.78 6.00 -0.50 -0.41 5.65 -6.30

19 185.47 -12.51 162.27 -4.28 -9.52 167.81 -1.01

20 37.26 -12.30 32.68 1.59 -9.33 33.78 5.00
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The mean of the absolute values of the percent errors in lifetimes obtained

using the U-i correction factor network in conjunction with the free tether lifetime

prediction network (i.e., mean of errors occurring when "U-i Corr." is applied to "Net

Life", Table 18) is 4.07% (i.e., mean of absolute values in "CNetl Error", Table 18).

The maximum magnitude percent error which occurred using this method was 10.47%.

As these results are well within the desired.± 20% accuracy limits, we conclude that

lifetime predictions obtained for free tethers, using the standard scenario lifetime

prediction and U-i correction factor networks, are reliably accurate.

The mean of the absolute values of the percent errors in lifetimes obtained

using the inclination-only correction factor function in conjunction with the free tether

lifetime prediction network (i.e., mean of errors occurring when "i-only Corr." is

applied to "Net Life", Table 18) is 5.54% (i.e., mean of absolute values in "CNet2

Error", Table 18). The maximum magnitude percent error which occurred using this

method was 14.60%. These values are slightly higher than those obtained using the

U-i correction factor network, but are still within the desired accuracy range. Six of

the 20 predictions obtained using the inclination-only procedure were more accurate

than those obtained using the U-i correction factor network.

Although not listed in the tables, the absolute value of the percent errors in

lifetimes obtained from the (standard scenario) free tether lifetime prediction network,

with no correction factors applied, as compared to those calculated with the MBM, is

16.4%. The maximum magnitude percent error was 37.2%, and 6 of the lifetimes
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predicted using this approach misrepresent the corresponding MBM value by more

than ± 20%.

The positive effects of both the U-i correction factor network and the

inclination-only correction factor function are obvious: each correction factor method

significantly reduced the mean percent error in the 20 cases, and, more importantly,

the maximum percent errors were also greatly reduced, to values well within the

maximum allowable error range. Figure 84 shows the errors in lifetime resulting from

each correction factor method, as well as the error in lifetimes predicted using the

standard scenario network with no corrections applied.

40 Uncorrected network prediction
Network w/ Inc-only correction

SNetwork w/ U-I correction
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Figure 84. Errors in free tether lifetime predictions.
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Results with Tether-Trailing Satellites, Standard Scenario. In this scenario, five

variables were determined randomly: the CM orbit's initial perigee and apogee radii,

the length of the trailing tether, and the subsatellite's mass and diameter. The CM

orbit's initial inclination was 28.5 in each case, and the initial argument of perigee

and true anomaly were zero. Table 19 contains the randomly determined initial

conditions and system characteristics, and Table 20 lists the calculated and predicted

orbital lifetimes, and errors, in each case. As always, the units on R,, fac, and tether

length are kilometers, the units on the subsatellite's mass and diameter are kilograms

and meters, respectively, lifetimes are given in hours, and errors are in percent.

The mean of the percent errors in EPM-calculated lifetimes is -3.35%, with a

maximum percent error of -9.52%. Similarly, the mean of the absolute values of the

Table 19. Initial conditions and system dimensions, standard scenario.

Case RP fac Length Subsat Mass Subsat Diam

1 6595.71 6714.98 64.41 111.78 1.70

2 6710.86 6767.23 85.96 140.27 2.92

3 6622.04 6673.86 54.92 186.83 1.92

4 6653.13 6786.82 66.21 478.58 4.06

5 6792.49 6828.16 98.89 118.00 3.79

6 6697.03 6710.07 74.24 207.14 0.98

7 6657.35 6684.04 92.72 340.12 4.25

8 6649.17 6727.61 51.11 455.06 4.30

9 6707.99 6808.13 83.65 234.26 0.07

10 6587.38 6647.40 73.39 239.35 1.78
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percent errors in lifetimes predicted using the trained neural network is 4.06%, and

the largest percent error is -11.56%. Hence we see that both the EPM and trained

lifetime prediction network provided results well within the desired ± 20% error

tolerance.

The network was able to provide acceptable predictions even in cases with

physically unrealistic subsatellite mass/diameter combinations. For example, in Case 9,

an 83.65 km (51.98 mile) tether was trailing below a 234 kg (516.5 Ibm), 0.07 m (0.24

ft = 3 inches) subsatellite; the network mispredicted the MBM-calculated lifetime of

38.56 hours by slightly more than 5%, even though no similarly unrealistic examples

were included in the training data set (in fact, no "unrealistic" examples were included

at all). This is a good indication that the network has successfully "internalized" the

Table 20. Calculated and predicted lifetimes and accuracies, standard scenario.

MBM EPM EPM Network Network
Case Life life Error Life Error

1 3.35 3.09 -7.76 3.09 -7.76

2 25.21 24.96 -0.99 24.86 -1.39

3 4.09 3.96 -3.18 3.88 -5.13

4 21.68 21.23 -2.08 21.36 -1.48

5 97.23 96.51 -0.74 95.86 -1.41

6 13.74 13.54 -1.46 13.32 -3.06

7 5.26 5.01 -4.75 5.10 -3.04

8 15.24 14.92 -2.10 15.32 0.52

9 38.56 38.19 -0.96 36.53 -5.26

10 1.47 1.33 -9.52 1.30 -11.56
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proper rules for prioritizing its inputs in a manner that allows it to generate correct

predictions.

Results with Tether Trailing Satellites, i = 28.5'. Results obtained for upward-

deployed tether-trailing satellites originating in nonstandard orbits (i.e., those with W, v

# 0) inclined at 28.5 * are shown in Table 22. Table 21 lists the randomly generated

initial conditions and system physical characteristics in each case. The units on values

in both Tables are identical to those discussed in the previous section.

The mean percent error in lifetimes calculated using the EPM, as compared to

those obtained using the MBM, is -4.95%, with a maximum percent error of -14.78%.

Although these errors are larger than we have seen in previous scenarios, they are,

nonetheless, acceptable. The EPM continues to be a reliable means of calculating

orbital lifetimes of tethered systems much more quickly than is possible with the

MBM.

The upward-deployed tether-trailing satellite lifetime prediction network

predicted lifetimes in this scenario with percent errors ranging from -19.79%, to

1.21 %. The mean of the absolute values of the percent errors is 7.62%, and the

maximum magnitude percent error was 19.79%.

We note that the argument of latitude in cases 4 and 13, the cases with the

maximum percent errors in predicted lifetime, are close to 90'. That the standard

scenario lifetime prediction network mispredicted these lifetimes is not surprising, as

we recall from our earlier investigation of initial inclination and argument of latitude
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Table 21. Initial conditions and system dimensions, i = 28.5 .

Subsat Subsat

Case R, fac (a v Length Mass Diam.

1 6584.14 6797.75 122.26 81.59 70.45 270.36 4.93

2 6609.39 6747.19 133.04 100.05 83.08 431.41 1.50

3 6601.99 6831.23 172.54 288.38 77.15 393.86 2.01

4 6798.17 6869.50 77.58 1.84 53.56 325.63 0.13

5 6644.13 6795.65 27.81 106.51 50.01 382.80 0.15

6 6740.44 6773.72 148.03 24.51 87.40 364.29 0.10

7 6812.26 6864.68 80.89 205.43 97.37 189.60 2.10

8 6755.97 6822.31 74.58 277.80 63.77 272.40 3.69

9 6622.93 6700.98 98.58 103.22 55.59 240.87 3.87

10 6752.40 6864.03 78.68 77.20 64.93 417.24 4.45

11 6641.98 6736.94 31.10 272.77 55.93 121.03 1.72

12 6735.13 6789.72 141.48 155.20 73.94 101.63 3.35

13 6621.15 6753.50 92.11 11.69 93.00 92.09 4.36

14 6625.06 6849.82 149.93 9.39 77.89 45.01 0.84

15 6784.60 6849.35 142.65 345.58 58.14 198.63 1.12

effects that i = 28.5 U = 90 is the location of an extremum value in the variation

of orbital lifetime relative to the same orbit and system's U = 0 lifetime.

Figure 85 shows the relationship between t -':ors in predicted lifetimes in this

scenario and lifetime correction factors provided by the U-i correction factor network

when i = 28.5'. Although the U-i correction factor network was trained using results
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Table 22. MBM life, EPM life, network predicted life, and errors, i = 28.5°.

MBM EPM EPM Network Network

Case Life Life Error Life Error

1 4.82 4.16 -13.69 4.47 -7.26

2 5.68 5.01 -11.80 5.09 -10.39

3 9.20 7.84 -14.78 8.11 -11.85

4 307.04 293.39 -4.45 248.51 -19.06

5 25.07 24.49 -2.31 23.11 -7.82

6 43.67 43.19 -1.10 42.26 -3.23

7 181.68 174.19 -4.12 166.73 -8.23

8 92.49 91.75 -0.80 90.64 -2.00

9 5.50 5.35 -2.73 5.45 -0.91

10 143.01 141.91 -0.77 144.74 1.21

11 9.55 9.36 -1.99 9.35 -2.09

12 44.74 44.04 -1.56 43.17 -3.51

13 6.67 5.96 -10.64 5.35 -19.79

14 13.08 12.93 -1.15 12.72 -2.75

15 170.34 166.37 -2.33 146.27 -14.13

derived from free tether orbital lifetime data, we see that the correction factors

would reduce prediction errors in 10 of the 15 tether-trailing satellite cases.

That the U-i correction factor network, trained using free tether data, may be

of beneficial assistance in predicting the orbital lifetimes of tether-trailing satellites is

not a totally illogical result. Since the lifetime prediction curves for upward-deployed
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Figure 85. U-i correction factors and errors in predicted lifetimes, i = 28.5 '

tether-trailing systems are essentially identical in character to those for free tethers

(only the magnitudes are different), the effects of variations in initial orbit inclination

and argument of latitude on orbital lifetimes should also be similar.

Figure 85 shows that the error in predicted lifetime for five of the cases in this

scenario will be increased by applying the corresponding U-i correction factor (i.e.,

there are 5 cases in which the correction factor and the error in (uncorrected)

predicted lifetime have the same sign). This results from the averaging process used

to generate the correction factor values - the lifetimes in some cases and scenarios

will differ from those in the standard scenario more than in others. For example, the

same phenomena occurred in two free tether, nonstandard scenario cases discussed
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earlier: in cases 4 and 6, Table 16, applying the appropriate U-i correction factors to

predictions provided by the free tether lifetime prediction network produced results

that were further from the "true" values provided by the MBM. Fortunately, the final

errors were still well within the desired error limits, and the mean and maximum

percent errors in the scenario were reduced, indicating the overall positive influence of

the correction factors.

Table 23 contains the U-i correction factors, the resulting corrected lifetime

predictions, and the errors in the corrected lifetimes, as compared to those obtained

using the MBM, for the 15 cases in the current tether-trailing scenario. The mean of

the percent errors is -6.8%, and the maximum percent error was reduced from

-19.79% to -13.94%.

Figure 86 shows, graphically, the changes in the percent errors caused by

applying the U-i correction factors to the uncorrected network predictions in each

case. As expected, the correction factors worsened the prediction errors in five cases.

Fortunately, as in the free tether scenario, the errors are still well below the desired

20% maximum error limit. Additionally, using the correction factors reduced the

mean percent error by 1.2 percentage points, and reduced the maximum error by

nearly 6 percentage points. Expecting similar results in all nonstandard scenarios, we

broaden our tests to include any allowable initial orbit inclination in the next section.
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Table 23. U-i correction factors, predicted lifetimes and errors, i = 28.5

U-i Correction Corrected Net Corrected Net

Case Factor, % Lifetime, hrs Error, %

1 -2.87 4.34 -9.96

2 0.27 5.10 -10.21

3 4.65 8.49 -7.72

4 7.72 267.70 -12.81

5 3.14 23.84 -4.91

6 -3.38 40.83 -6.50

7 3.62 172.77 -4.90

8 -6.00 85.20 -7.88

9 -3.03 5.28 -4.00

10 -1.39 142.73 -0.20

11 0.91 9.44 -1.15

12 2.46 44.23 -1.14

13 7.23 5.74 -13.94

14 -1.95 12.47 -4.66

15 2.41 149.80 -12.06
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Figure 86. Errors in corrected and uncorrected predicted lifetimes, i = 28.5".

Results with Tether-Trailing Satellites, All Orbital Elements Variable. Results

obtained for randomly-sized upward-deployed tether-trailing satellites, originating in

randomly chosen orbits, within the constraints on the models and prediction methods,

are presented in Tables 25 and 26. Table 24 lists the randomly chosen initial

conditions, tether length, subsatellite mass, and subsatellite diameter in each case.

Table 25 contains the MBM, EPM, and (uncorrected) network-predicted lifetimes. It

also lists the percent errors in lifetimes obtained using the EPM and prediction

network. Table 26 lists the U-i correction factors ("U-i Corr."), the lifetimes and

errors resulting from using these correction factors ("CNetl Life", "CNetl Error"), the

inclination-only correction factors ("i-only Corr."), and the lifetimes and errors
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resulting from using these corrections ("CNet2 Life", "CNet2 Error"). The units on

values in all three tables are identical to those used in the previous section.

Table 24. Initial conditions and system dimensions, upward-deployed satellites.

Subsat Subsat

Case RP fac i W v Length Mass Diam

1 6824.14 6873.19 42.11 91.28 13.64 63.67 309.39 4.15

2 6691.45 6855.33 47.59 125.74 45.05 90.18 308.82 2.01

3 6718.85 6848.27 46.95 126.63 172.56 89.18 240.19 2.46

4 6738.76 6875.86 27.03 155.17 290.58 88.56 411.87 4.22

5 6712.39 6713.89 76.12 140.77 144.16 73.48 88.27 4.26

6 6595.90 6864.56 12.51 13.01 234.48 70.39 202.60 0.37

7 6838.66 6857.92 0.95 178.56 280.78 68.92 446.48 4.87

8 6594.04 6738.29 63.29 117.28 193.20 77.79 219.08 2.84

9 6592.30 6828.20 53.87 10.05 350.01 58.26 140.83 2.25

10 6587.22 6804.55 36.71 67.40 172.89 50.42 282.38 2.51

11 6624.97 6838.17 73.66 25.14 343.11 67.12 390.60 1.17

12 6628.36 6827.54 45.03 65.54 258.06 77.74 41.94 2.92

13 6686.59 6690.88 60.69 14.47 2.06 96.29 369.59 1.07

14 6746.08 6846.17 53.61 130.85 28.10 86.64 73.13 4.71

15 6619.69 6734.55 72.84 42.77 171.90 54.63 224.84 2.19

16 6747.28 6769.10 28.21 138.13 157.57 66.88 172.27 4.16

17 6631.90 6839.81 11.57 136.39 92.41 84.04 479.40 0.14

18 6773.92 6850.35 23.37 31.08 6.56 95.30 220.56 2.01

19 6674.20 6826.27 64.91 91.77 47.73 97.84 417.86 3.12

20 6662.79 6797.55 51.60 26.49 129.33 88.54 116.52 1.43
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Table 25. MBM, EPM and network lifetimes and errors, upward-deployed satellites.

MBM EPM EPM Network Network

Case Life life Error Life Error

1 388.81 347.27 -10.68 283.73 -27.03

2 45.04 44.71 -0.73 40.67 -9.70

3 68.46 67.52 -1.37 55.18 -19.40

4 110.85 102.58 -7.46 101.72 -8.24

5 25.60 24.97 -2.46 15.12 -40.94

6 6.88 6.03 -12.35 8.38 21.80

7 317.22 301.40 -4.99 331.75 4.58

8 5.14 5.04 -1.95 3.25 -36.77

9 7.88 7.49 -4.95 7.29 -7.49

10 8.26 7.36 -10.90 7.10 -14.04

11 19.76 19.28 -2.43 16.49 -16.55

12 12.29 12.27 -0.16 11.83 -3.74

13 9.96 9.54 -4.22 7.83 -21.39

14 77.31 76.83 -0.62 70.33 -9.03

15 10.00 9.55 -4.50 7.09 -29.10

16 47.83 47.02 -1.69 45.33 -5.23

17 14.59 13.60 -6.79 15.64 7.20

18 107.39 106.01 -1.29 102.87 -4.21

19 33.84 33.18 -1.95 24.90 -26.42

20 18.09 17.97 -0.66 15.80 -12.66
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Table 26. Prediction method accuracies, upward-deployed satellites.

U-i CNetl CNetl i-only CNet2 CNet2

Case Corr. Life Error Corr. life Error

1 21.86 345.75 -11.07 12.37 318.83 -18.00

2 8.59 44.16 -1.95 17.20 47.67 5.84

3 24.68 68.80 0.50 16.64 64.36 -5.99

4 3.92 105.71 -4.64 0.22 101.94 -8.04

5 63.14 24.67 -3.63 35.96 20.56 -19.69

6 -8.69 7.65 11.19 -7.45 7.76 12.79

7 -9.38 300.63 -5.23 -9.63 299.80 -5.49

8 29.35 4.20 -18.29 29.80 4.22 -17.90

9 7.96 7.87 -0.13 22.60 8.94 13.45

10 9.48 7.77 -5.93 7.72 7.65 -7.39

11 12.69 18.58 -5.97 35.22 22.30 12.85

12 8.40 12.82 4.31 14.94 13.60 10.66

13 13.84 8.91 -10.54 27.98 10.02 0.60

14 13.95 80.14 3.66 22.39 86.08 11.34

15 23.81 8.78 -12.20 34.93 9.57 -4.30

16 2.33 46.39 -3.01 1.06 45.81 -4.22

17 -8.77 14.27 -2.19 -7.76 14.43 -1.10

18 0.32 103.20 -3.90 -2.19 100.62 -6.30

19 25.61 31.28 -7.57 30.86 32.58 -3.72

20 13.91 18.00 -0.50 20.69 19.07 5.42

The mean percent error in lifetimes calculated using the EPM, as compared to

those obtained using the MBM (i.e., mean of "EPM Error", Table 25) is -4.11%, with
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a maximum percent error of -12.35%. Hence the EPM has again proven to be a

reliable means of quickly calculating orbital lifetimes.

The upward-deployed, tether-trailing satellite lifetime prediction network

provided predicted lifetimes with percent errors ranging from -40.94% to 7.20%

("Network Error", Table 25). The mean of the absolute values of the percent errors is

16.30%, and the predicted lifetimes in 7 of the 20 cases were in error by more than

t 20%. These results are not surprising, since the (uncorrected) network predicts

orbital lifetimes assuming a standard scenario (i = 28.5 *, c = v = 0).

Applying correction factors provided by the U-i correction factor network

reduced the mean of the absolute values of the percent errors to just 5.82%, with a

maximum magnitude percent error of 18.29% ("CNetl Error", Table 26). Percent

errors ranged from -18.29% to 11.19%.

Using correction factors provided by the inclination-only correction factor

function yielded a mean (absolute) percent error in predicted lifetime of 8.75%, with

errors ranging from -19.69% to 13.45% ("CNet2 Error", Table 26).

Clearly, both correction factor techniques, derived using free tether results,

were successful in significantly reducing the errors in predicted lifetimes of tether-

trailing satellites. These results are noteworthy, in addition to those obtained in the

previous (i = 28.5 *) section, because they demonstrate the capability of the

techniques over a wide range of initial orbit inclinations. Initial inclinations in this

scenario ranged from a low of only 0.95 *, to 76.12 (Table 24).
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Figure 87 shows the relationships between the errors in lifetimes produced by

each of the three prediction approaches: the prediction network with no corrections

applied, the inclination-only correction factor approach, and the U-i correction factor

approach. In four cases (8, 13, 15, 17) the inclination-only method yielded smaller

magnitude percent errors than the U-i method. However, the differences were only

significant in Case 15 (-4.30% vs. -12.20%) and Case 13 (0.60% vs. -10.54%). The

inclination-only method worsened the error in predicted lifetime in 6 of the 20 cases,

two of which were significant (9, 12), as compared to only 2 cases worsened by the U-i

correction factors, neither of which were significant. Despite the "incorrect

corrections", all errors were within the desired limits.

40 Uncorrected network prediction
Network w/ Inc-orgy correction

R Network w/ U-i correction

~DOC
S30

I- 20
h..

0 111

20 1O 2DOI 789111234511112

Case

Figure 87. Errors in tether-trailing satellite lifetime predictions.
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Both correction factor methods appear to provide an acceptable means of

assisting the lifetime prediction network in calculating predicted lifetimes of upward-

deployed tether-trailing satellites originating in nonstandard orbits. However, we must

caution that although the inclination-only correction factor function led, with less

effort, to acceptable lifetime predictions in the random test cases studied here, this

may not always be the case.

Because the initial argument of latitude may cause significant variations about

the mean correction factor, at any given inclination, but particularly at the higher

inclinations, it is more likely that correction factors obtained using the inclination-only

approach will be inadequate, as initial orbit inclination increases, than those obtained

using the U-i correction factor network. Because this situation is a result of natural

phenomena (i.e., the shape of the Earth and atmosphere), this caution applies to

lifetime predictions for both free tethers and tether-trailing satellites.



CONCLUSIONS AND RECOMMENDATIONS

In 1988, King-Hele and Walker, two of the world's foremost authorities on

predicting the orbital lifetimes of single-mass Earth satellites, stated, "Accurate

prediction of the lifetimes of satellites decaying naturally under the action of air drag

is one of the most difficult problems of orbital dynamics".1°2 The objective of this

research project was to develop a method for predicting the orbital lifetimes of

uncontrolled free tethers and tether-trailing satellites, systems whose dynamics and

physical properties are, in many respects, more complex than those of single-mass

satellites.

The general approach to solving the problem has been the application of the

so-called empirical method. Mathematical functions, in the form of trained artificial

neural networks, have been derived from data produced by a dynamical system model.

Using an extensive multibody model (MBM), which includes tether elasticity

and attitude variation effects, the effects of various assumptions on calculated orbital

lifetimes were investigated. It was shown that modeling drag coefficients as Knudsen

number-dependent variables, as compared to setting them to commonly used constant

values, has a significant effect on calculated lifetime. We also found that assuming an

oblate Earth and a rotating, oblate atmosphere had a discernible effect on calculated

lifetimes.

199
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An orbital element propagation model (EPM), using Gauss' form of Lagrange's

planetary equations, in terms of equinoctial elements, was developed. The EPM

provides very accurate orbital decay results, as compared to the more rigorous multi-

body model, very quickly. The EPM's accuracy was demonstrated in scenarios

involving free tethers, upward- and downward-deployed subsatellites trailing a tether,

and also with a system consisting of a tethered pair. In 90 randomly chosen test cases

(45 free tethers, 45 upward-deployed tether-trailing satellites), errors in lifetimes

calculated with the EPM, using results obtained with the MBM as truth, were always

smaller than ± 15%. In 80 of the 90 test cases, the errors were less than ± 10%. In

each case, the EPM reduced computer simulation time by a ratio of over 300 to 1.

Hence we have developed a new and original technique for reliably simulating the

orbital decay of tethered systems, very quickly.

It was shown that lifetimes calculated using an equivalent (mass and area)

sphere in the place of a tethered system were only sometimes reliable. The most

severe errors occurred with free tethers longer than approximately 50 kin, and

upward-deployed subsatellites trailing a (downward-deployed) tether longer than

approximately 50 km. The focus of the research project was hence narrowed to

provide prediction techniques for free tethers and upward-deployed tether-trailing

satellites. It is these systems whose lifetimes will be very poorly predicted by the

various single-mass orbital lifetime prediction methods used today.

We derived an algorithm to train feed-forward artificial neural networks by

minimizing a cost function based on the sum of the percentage errors which occur in a
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network's representation of a training data set. This algorithm has proven to be very

effective in training networks to represent orbital lifetime data spanning many orders

of magnitude. The "standard" backpropagation training algorithm is often unable to

train a network to accurately represent widely-spread real-valued data, as it seeks to

minimize a cost function based on the summation of the squares of the magnitude

errors. A hybrid training approach was also described and demonstrated. This

combination of the derived Minimum Percent Error (MPE) and standard

backpropagation training algorithms is often able to significantly reduce training time

while producing a network which generalizes well.

The MPE training algorithm and hybrid training approach were used to train

three networks: one to predict the orbital lifetimes of free tethers, one to predict the

orbital lifetimes of upward-deployed tether-trailing satellites, and one to provide

correction factors for predicted lifetimes, which account for variations in initial orbit

inclination and argument of latitude.

The lifetime correction factors, which vary as functions of both initial

inclination and initial argument of latitude, were derived using an averaging approach.

Although derived using lifetime data for a 50 km free tether, the corrections were

shown to be dramatically effective in modifying the predicted lifetimes of tethers and

upward- deployed systems of various dimensions.

There are some cases in which the correction factor will not modify a predicted

lifetime enough to place its accuracy within the desired ± 20% error range, but we

have observed that essentially all of these occurrences involve relatively short
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lifetimes. The most common cases in which this deficiency occurs are those involving

an initial perigee radius of 6578.137 km. Lifetimes in these cases typically range from

one-half hour to approximately 10 hours.

An inclination-only lifetime correction factor function was also derived. This

function provides a relatively easy and quick way to approximate differences in

lifctimcs cased by differences in initial orbit inclination. A~s inclination increases, the

function-provided correction factors become less reliable, since variations in initial

argument of latitude cause larger and larger deviations from the mean (inclination-

driven) difference in lifetime. However, as we demonstrated in 40 randomly-

generated test cases (20 free tether cases, 20 upward-deployed tether-trailing satellite

cases), the inclination-only function provides satisfactory results in many instances,

even at high inclinations.

There are quite a few effects that were not investigated in this research

project. One possibly significant area for further research is the effect of material

properties on orbital lifetimes. It is likely that tether properties, such as mass density,

elasticity, and the coefficient of thermal expansion, may have a discernible, if not

significant, affect on lifetimes. The material properties of any attached end-body, such

as surface reflectivity, absorbtivity, etc., may also cause significant changes in

calculated lifetimes. Variations in end-body shape and orientation may also

significantly affect orbital lifetimes.

Extending the models to simulate the orbital evolution of systems originating in

higher altitude orbits, which hence have longer lifetimes, is another area of possibility.



203

To be done reliably, this will require, at a minimum, that the Sun's gravitational forces

be added to the force model developed in this work.

The initial state of a deployed tether will definitely affect a system's orbital

lifetime. Lifetimes undoubtedly will vary notably if a deployed tether is initially

stretched significantly, or is not nearly straight, or is not aligned along the local

vertical. Any of these initial conditions will probably render results obtained with the

EPM, in its present form, woefully inaccurate. However, it may be possible, by simply

modifying the (constant) tether shape and orientation assumed in the model, to

continue to use the orbital element propagation approach reliably.

In addition to providing mathematical models and trained neural networks

which can be used by others to calculate and predict the orbital lifetimes of various

tethered systems, we have also demonstrated a very powerful approach to solving

"difficult" problems. Although the empirical method is centuries old, the ability of

artificial neural networks to develop, autonomously, their own internal rules and

representations, simply by repeatedly viewing and attempting to emulate a training

data set, is a current capability that greatly simplifies a researcher's task. This

capability is especially valuable in situations involving multidimensional data, as

a priori knowledge of the form of an appropriate function is not required. We have

also demonstrated the ability of neural nets to learn to quite accurately represent

widely-spread real-valued data.

Whether or not tethered satellites ever become commonplace in Earth orbit,

and whether or not an operational need to predict the lifetime of an uncontrolled
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system ever arises, the use of artificial neural networks as an integral part of the

empirical method is surely an approach whose value and power are just beginning to

be realized. The neural network training techniques derived and applied in this

research project will undoubtedly be appropriate for future applications in various

fields of study and endeavor.
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Atmospheric Mass Density Model. The algorithm used to model the 1986 COSPAR

International Reference Atmosphere mass density is presented below. The equations

were derived using a least squares method. To maximize curvefit accuracy, the data

were separated into six altitude segments. Each equation requires that altitude (alt)

be input in kilometers, and yields the mass density in kg/m3.

For 50.0 km _< altitude < 70.72 km

densi a + c *alt + e -alt2

,b1 + -alt +d--aft + f -.a 3

where

a = -0.013334132 b = -0.062682054 c = 0.00010393496

d = 0.001238967 e = 1.108105X10- 7  f = -9.6011459X10-6

For 70.72 km < altitude < 103.319 kmin

density =exp(a + b -alt3 + Cf

where

a - -13.2408775 b - -4.9112657x10- 6  c = 386.6494328

For 103.319 km < altitude < 125 kmn

density = a + b alt + c + d + e

ait.
5  alt

2

where
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a - -0.0017583229 b = 2.8715758x10- 6

c = 0.646620178 d = -7.63995073

e = 26.45513632

For 125 km _5 altitude < 200 km
density _a +c*aft)2

1 + b- aft

where

a = -3.144972 J b = -0.0096872241 c = 7.9433967X10- 8

For 200 km • altitude < 500 km.

density = expI a + b alt +__altC

where

a = -22.6805231 b = -0.01319637 c = 663.289123

For 500 km 5 altitude _ 1000 km.

density = exp (a + b'alt2 + c• alt2" ln(aft))
where

a = -21.5579663 b = -0.00014824362 c = 1.9745928x10 5-
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Figures A-1 through A-5 show the smoothness of the fit between data points

and at altitudes where there is a transition from one equation to the next. Figure A-6

shows the atmospheric mass density over the altitude range 50 km to 1000 kin, and

Figure A-7 shows the accuracy of the curvefit. Curvefit error is less than ± 4% at

any altitude up to 1000 kin, and less than ± 2% over the altitude range 50 km to 500

km.
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Figure A-I. Atmospheric mass density, 50-75 km.
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Figure A-2. Atmospheric mass density, 75-105 km.
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Figure A-3. Atmospheric mass density, 105-130 km.
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Figure A-4. Atmospheric mass density, 130-200 km.

3.OOE-10

2AOE-1 0

- Curvofit Value
0 COSPAR Value

- 1.80E-10

1.20E-10

6.OOE-1 1

0.OOEO L _ , _ _ _ _ _ ,_ _ _ _ _ _ _ ,_ _ _ ,_ ,

200 250 300 350 400 450 500
Altitude, km

Figure A-5. Atmospheric mass density, 200-500 km.
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Molecular Mean Free Path Model. Mean free path data derived from the 1986

COSPAR International Reference Atmosphere is modeled in four altitude segments.

The maximum altitude modeled is 200 kin, since the largest body included in the

present work (a 5 meter sphere) experiences free molecular flow conditions prior to

reaching this height. The equations were derived using a least squares method. Each

requires the altitude (alt) in kilometers, and yields the mean free path (m4p) in meters.

For 50 km 5 altitude -5 70.72 km

mfp = a +c alt

1 +b alt +d alt2

where

a = -1.6333717X10- 5  b = -0.025658961

c = 5.2525786X10- 7  d = 0.00016667317

For 70.72 km < altitude :_ 103.319 km.

mfp a +c alt
1m 1 + balt + dalt2

where

a = -0.00630741-, b = -0.017378386

c = 0.00016634472 d = 7.6539008x10-'
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For 103.319 km < altitude _< 125 km

mfp = a + c.ln(alt) + e. -in (alt))
1 + b -In (alt) + d.- in (alt)

where

a = 0.877984043 b = -0.40954511

c - -0.38755049 d = 0.041951477

e = 0.042777741

For 125 km < altitude s 200 km.

mf =(] ba+Cl 2

where

a = -9.09341521 b = -0.0020986475 c = 0.088170734

Figures A-8 through A-il show the smoothness of the fit between data points

and at altitudes where there is a transition from one equation to the next. Figure A-

12 shows the molecular mean free path over the altitude range 50 km to 200 km. As

shown in Figure A-13, the curvefit absolute error is less than 3% over the modeled

altitude range.
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Circular Cylinder Drag Coefficient. The algorithm used to model the variation of the

aerodynamic drag coefficient of a circular cylinder is presented below. The equation

that links the free molecular and continuum flow regimes was derived using a least

squares method. The independent variable is the dimensionless Knudsen number

(Kn), formed by dividing the free stream molecular mean free path by the cylinder

diameter.

For Kn <s 0.01

CD = 1.24

For 0.01 < Kn < 10.

CD = + b ln(Kn) +(In(,)) + d

where

a = -0.0017583229 b = 2.8715758x 106

c = 0.646620178 d = -7.63995073

For 10 5 Kn.

CD = 2.80

Figure B-i shows the curvefit results and the empirical data.
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Figure B-1. Circular cylinder drag coefficient variation.

Sphere Drag Coefficient. The algorithm used to model the variation of a sphere's

aerodynamic drag coefficient is presented below. The equation that links the free

molecular and continuum flow regimes was derived using a least squares method.

The independent variable is the dimensionless Knudsen number (Kn), formed by

dividing the free stream molecular mean free path by the sphere diameter.
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For Kn : 0.001.

CD = 0.92

For 0.001 < Kn < 10,

a -a+ cln(K)+e(ln(Kn))2 
+ g(In(Kn)) ))4

1 + b In(Kn) + d(In(Kn))2 + f(In(Kn))3 + h (In(Kn))4 + j(In(Kn))s

where

a = 2.466284047 b = 0.369700078 c = 1.194683231

d = 0.14802969 e = 0.368965697 f = 0.027107488

g = 0.062605796 h = 0.00092770392 i = 0.0041343789

j = -0.00012474748

For 10 _Kn

CD = 2.70

Figure B-2 shows the curvefit results and the empirical data.
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This Appendix contains the values of the weights and biases used in the free

tether orbital lifetime prediction network. The network consists of 34 neurons

arranged in 3 layers (input-hidden-output). The 3 input neurons and single output

neuron are linear elements, while the 30 hidden neurons use the sigmoidal logistic

function. The input values must be properly scaled and applied to the correct input

neuron. The network's output is the approximate lifetime (elapsed time for the tether

center of mass to reach 150 km altitude) of the free tether, in hours. The lifetime

prediction assumes the tether center of mass is initially in a 28.5 inclination orbit

with argument of perigee and true anomaly both equal to zero.

Units and Limits. The network requires that a scaled radius of perigee (Rp') be

provided to Input Neuron 1, a scaled size and shape factor (fac') be provided to

Input Neuron 2, and a scaled tether length (F') be provided to Input Neuron 3. Rp'

and fac' describe aspects of the tether center of mass' initial orbit.

Input to Input Neuron 1:

S(R(km) - 6578.137) + 300, 6578.137 km s R P 6878.137km

Input to Input Neuron 2:

fac' = (fac(km) - 6578.137) + 300, 6578.137 km _5 fac :_ 6878.137 km

R-R R-R
fac-R+ 2, e- p

P 1+e R +Ra .P
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Input to Input Neuron 3:

l/ = length(km) 10km _ length 5 125km

1001km '

Connection Weights from Input Neurons to Hidden Neurons (Wijj.

Hidden Weight from Input Weight from Input Weight from
Unit # Unit 1 (Rp') Unit 2 (fac I) Input Unit 3 (1 )

1 10.3444915859 8.2527591085 -0.6751672663
2 6.2333808295 5.9146212372 -0.2813545438
3 4.9317921366 3.0737802825 -0.5340004101
4 -0.2713022307 0.3241286937 -0.2267440989
5 6.3103255220 6.0044604626 -0.2978133929
6 1.8701164555 7.4375496959 -0.2822153247
7 -0.6691715619 -0.0542085754 0.5526113910
8 5.1297754736 3.4118906609 -0.5134497213
9 -4.1934406968 -1.5832846711 -2.1211700006

10 6.1931646191 5.8388058457 -0.2571912350
11 6.9713464320 6.5285636816 -0.3933455083
12 -0.1599688473 -0.0303760751 -0.3664126540
13 0.5447138619 0.5011952513 1.6290742099
14 2.4783489123 2.0368718709 -4.1100527207
15 11.0113111674 8.6482262431 -0.7046314917
16 6.9010939576 5.2474031080 -0.4247669835
17 -0.9767128223 1.3047661034 4.0733606760
18 0.3102134131 0.8164468535 0.1965550481
19 -3.1537052259 10.0224136902 -0.6928904359
20 8.8229666635 7.4819011876 -0.5815027101
21 2.3815726950 1.3011267816 -0.6969581403
22 -6.5519738882 -5.0081203823 0.4082005928
23 8.3018994362 7.2358437489 -0.5380372513
24 7.4483683550 2.3540628074 -0.4323303364
25 5.9153979386 -6.6892904207 0.0376885535
26 -2.2425243319 7.2488943483 0.3431325889
27 11.9394594358 9.2843448882 -0.7381789263
28 8.6287280208 7.3903233795 -0.5660893863
29 1.9414716365 1.1795956443 4.0024544434
30 0.1094380036 0.6506214195 -0.1892025399
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Biases on Hidden Neurons (vi).

Hidden Bias Hidden Bias
Unit # Unit #

1 16.8077610465 16 8.1577406761
2 10.1679628840 17 0.6701441975
3 5.8456202221 18 0.7682754851
4 0.9967226979 19 8.5789296376
5 10.4010601127 20 14.6006452581
6 6.3201548074 21 2.5648353952
7 2.4460679242 22 -7.9065621340
8 6.2410283199 23 13.8467621879
9 0.4461119653 24 4.6899025883

10 9.9165711091 25 -3.2369315023
11 11.7617874295 26 3.3734023560
12 1.1354550692 27 19.2968728600
13 0.1312053257 28 14.3210171070
14 -0.5810254700 29 7.8210828708
15 17.8174365290 30 0.4219097122

Bias on Output Neuron (v,,). vk = 0.8827370959



233

Connection Weights from Hidden Neurons to Output Neuron (WiL.

Hidden Connection Hidden Connection
Unit # Weight Unit # Weight

1 30.3956513227 16 16.6699114935
2 22.4919846679 17 4.3335399014
3 9.3395399204 18 0.7648396518
4 -0.0464153938 19 -12.7884580003
5 22.7118252621 20 27.2339012791
6 13.9857769386 21 3.2066533761
7 -1.3283093900 22 -15.4657532622
8 10.2027996201 23 26.2887461808
9 4.1950648661 24 17.8527651477

10 22.3088900623 25 9.8722456181
11 23.9435997555 26 7.8464704176
12 -0.6626808404 27 34.8665680420
13 2.6674574948 28 26.8772946996
14 3.7104488603 29 -5.2674438644
15 32.1030342755 30 0.3218249791
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This Appendix contains the weights and biases used in the lifetime correction

factor network. The network consists of 33 neurons arranged in 3 layers (input-

hidden-output). The 2 input neurons and single output neuron are linear elements,

while the 30 hidden neurons use the sigmoidal logistic function. The input values

must be properly scaled and applied to the correct input neuron. The network's

output is the approximate percent difference of the current system's lifetime from the

lifetime of the same system if it were initially in a 28.5 * inclination orbit with

argument of perigee (ca) and true anomaly (v) both equal to zero.

Units and Limits. The network requires that a scaled orbit argument of latitude (U')

be provided to Input Neuron 1, and a scaled orbit inclination (i') be provided to

Input Neuron 2. Both values describe the initial orbit of a tethered system's center of

mass.

Input to Input Neuron 1:

U' = U(degrees) + 540%, U- + v

0_ :5o < 180", 00 5 v :5 360"

(If ( > 180*, set (a = ca - 180)

Input to Input Neuron 2:

i' =/(degrees) + 80", 0 < i s5 80
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Connection Weights from Input Neurons to Hidden Neurons (Wij.

Hidden Weight from Input Weight from Input
Unit # Unit 1 (U') Unit 2 (i')

1 30.5971515814 4.2154281069
2 1.5359433496 0.6645087827
3 18.9948056456 4.0498542229
4 10.0200398651 1.0408554490
5 7.5347850384 5.5977041680
6 9.9459586415 4.0703293434
7 12.7259687199 -0.4073947197
8 -27.5303599618 -1.2033839472
9 20.9967550767 -0.2315195436

10 21.7885288593 3.9151261135
11 40.2950097475 0.1027142209
12 34.5586443769 -3.8599055824
13 0.7048572069 -0.2148552433
14 -23.9673056492 -5.6658241090
15 21.8685301844 3.2099527177
16 30.0194869073 -3.2641333936
17 24.4330317432 -4.3340278336
18 -3.4042577277 -11.0525781328
19 -3.0450950244 -0.3284852997
20 1.8134324339 0.5183198298
21 -4.0943983506 8.8564511168
22 4.4311867542 -12.4286344356
23 24.9048656402 -2.6994067402
24 33.6455529543 -3.5856185612
25 14.7544079852 -1.1853701692
26 28.0974456648 0.2034712477
27 30.0344602034 1.1562867808
28 6.3292649168 5.6642145314
29 -29.9038184209 -1.3838931026
30 25.4266943025 -0.4043601786
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Biases on Hidden Neurons (vi).

Hidden Bias Hidden Bias
Unit # Unit #

1 17.6093087286 16 23.7873981681
2 3.8006133494 17 16.6318756999
3 16.2289117587 18 -7.3090861636
4 9.5084719397 19 2.4766336145
5 4.1932369682 20 6.4882973551
6 20.3962096358 21 11.0650263849
7 10.7107124618 22 -4.5731277922
8 -7.2868966611 23 2.9744167747
9 13.8476381791 24 13.4642458356

10 12.2005467111 25 9.9150583278
11 22.6092819297 26 12.5408367960
12 15.9861404286 27 24.3205943278
13 4.5737809755 28 11.6239406257
14 -22.3438917670 29 -3.3418628694
15 6.0985060360 30 18.0221365072

Bias on Output Neuron (v_). Vk = 5.9924819741.
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Connection Weights from Hidden Neurons to Output Neuron (WJ.

Hidden Connection Hidden Connection

Unit # Weight Unit # Weight

1 56.3522660224 16 -30.2499663020
2 0.7295784261 17 -26.7571804965
3 -14.3285007883 18 -10.8642652415
4 -8.4412121825 19 -4.2988860191
5 -11.5107482830 20 -4.5700306676
6 9.3185889284 21 17.1121581216
7 -7.7946318494 22 -10.6115295797
8 57.3059464346 23 -24.4499393519
9 -16.5019528754 24 -31.6767497174

10 -15.2759689874 25 10.3384517394
11 -31.0423967532 26 57.8360370860
12 -32.3281387432 27 39.0244463608
13 -4.0524857910 28 -6.7327232342
14 -15.8510865448 29 -18.7580187996
15 67.3870802586 30 38.1790378863
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This Appendix lists the weights and biases used in a network trained to predict

the orbital lifetimes of upward-deployed tether-trailing satellites. The network consists

of 105 neurons arranged in 3 layers (input-hidden-output). The 4 input neurons and

single output neuron are linear elements, while the 100 hidden neurons apply the

sigmoidal logistic function. The input values must be properly scaled and applied to

the correct input neuron. The network's output is the approximate system lifetime

(elapsed time for the system center of mass to reach 150 km altitude), in hours. The

lifetime prediction assumes the system's center of mass is initially in a 28.5 inclination

orbit with argument of perigee and true anomaly both equal to zero. Although not an

input to the network, the subsatellite's diameter should be no more than 5 m.

Units and limits. The network requires that a scaled radius of perigee (Rp') be

provided to Input Neuron 1, a scaled size and shape factor (fac') be provided to

Input Neuron 2, a scaled tether length (P') be provided to Input Neuron 3, and a

scaled subsatellite mass (i') be provided to Input Neuron 4. Rp' and fac' describe

aspects of the system's center of mass initial orbit.

Input to Input Neuron 1:

= (Rp(km) - 6578.137) + 300, 6578.137 km <s R 6878.137km

Input to Input Neuron 2:

fac' = (fac(km) - 6578.137) + 300, 6578.137 km __ fac s 6878.137 km

R R R -R
fac=R, + , e"1 +e R +R

a p
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Input to Input Neuron 3:

P = length(km) 50 km __ length <100 km100 km'

Input to Input Neuron 4:

m mass(kg) 0 <_ mass _5 500kg
500kg

Connection Weights from Input Neurons to Hidden Neurons (Wr1 .

Hidden Weight from Input Weight from Input Weight from Inpu eight from Inpu
Unit # Unit I (Rp') Unit 2 (fac') Unit 3 (P') Unit 4 (m')

1 3.8304109785 2.1283882083 -1.5953995074 1.0388837505
2 6.6771622814 4.8239132702 -6.0781793491 2.8720276291
3 4.1517471753 2.9931136185 -0.9268389978 0.8121063827
4 6.3315124888 4.4878045212 -4.9244508365 2.4976508234
5 9.6182565842 1.7968282685 -2.2628064870 0.3977966238
6 8.4247519244 3.9704171172 -4.7606592013 1.7941595688
7 6.2091720617 4.4200179985 -6.1031471404 2.6947993015
8 8.3662335333 5.3499817134 -9.0050298632 3.7640240781
9 5.4081827193 4.3758476090 0.1065743273 0.4221847542

10 6.8187009211 5.0331215690 -6.2125680537 2.9517643400
11 10.7886131846 6.3836069003 -0.0647634430 0.3786433702
12 6.0654024261 4.7812414783 1.7934039533 -0.6310976473
13 -5.6604996777 -2.9062716984 12.2768961492 4.3149460411
14 6.4177837595 5.7787446634 -1.1650118122 1.0665634771
15 6.1423889328 5.1218303522 0.8945095 104 0.0300039942

16 6.8586479922 5.2355560723 -4.1983060338 2.2994389073
17 5.9865847581 4.1574324597 -5.0307394937 2.4422995553
18 5.4409211357 4.2847248878 0.5685184030 0.1085729250
19 6.3455844172 4.8760528680 -3.8242925683 2.1616027304
20 7.3477416419 5.0472018383 -7.1286850358 3.2745207403
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Connection Weights from Input Neurons to Hidden Neurons, continued.

Hidden Weight from Input Weight from Input Weight from Input Weight from Input
Unit # Unit 1 (Rp') Unit 2 (fac') Unit 3 (P') Unit 4 (m')

21 8.7051751997 3.4985978108 -2.8879668124 0.9759321006
22 4.8793339135 3.8304929555 -0.4996792039 0.7139517580
23 6.7658830391 4.9864272832 -5.9004309289 2.8789694563
24 5.3478442794 4.2608917852 0.3055423183 0.2761590710
25 4.9892716391 3.9910612023 -0.8708736231 0.9410736066
26 6.8332179671 5.0159825068 -6.4859851604 2.9955665331
27 1.1161934457 1.0115731055 -5.9848274428 -6.2919063102
28 5.4792029952 4.1677846148 1.2045747901 -0.3566681495
29 5.8971343638 4.6409340257 1.4624097934 -0.4316879128
30 5.8517264705 4.7908394540 0.7392491569 0.0787246610
31 6.3309056755 5.2749936762 -2.5245739128 1.6001494970
32 7.0101064667 5.3508802294 -4.2736424087 2.3258123216
33 8.1322711146 4.9525449870 -8.2225018327 3.6128066932
34 6.2454201901 4.3087962825 -6.4618415748 2.7446363458
35 5.8036465543 4.7815136432 0.4767047094 0.2450486773
36 5.8893713156 4.9003380614 0.4714280781 0.2635023210
37 8.6312756151 5.2240463686 -8.2996459836 3.7745682221
38 4.7794125730 3.7350156996 -0.8003643375 0.8693981518
39 6.3297162480 5.1198172892 1.8769209785 -0.6192664151
40 6.7817690722 4.8457316719 -7.2362798963 3.0528221960
41 7.4852375242 5.3089419720 -7.3660843176 3.3591590327
42 4.0898279791 1.9278521554 -0.9182705328 4.7979939127
43 7.1194916442 5.3654465437 -6.8719827220 3.1659463460
44 9.5494620414 3.4920899228 -2.6312509643 0.6722894688
45 4.9038493150 3.0050644687 -2.3380042802 1.3292331668
46 7.0625009385 5.4517267639 -6.8467375411 3.1412316053
47 5.3100698539 4.3081180883 -0.1285123191 0.5582117522
48 5.4344903044 3.8598230416 4.5920766557 -2.9622475616
49 4.4407191340 3.2972044450 -1.4662021831 1.1381277056
50 1.5607667552 5.8854659108 -1.0132879678 1.2401548774
51 6.8728706830 5.1876477186 -6.7295383526 3.0448219367
52 4.6329821023 3.5442109638 -0.6277456861 0.7407901091
53 7.0409744913 3.1996099364 -3.2949510876 1.3815393681
54 4.3442507416 -5.7277039357 -0.1386501077 -0.7552146444
55 4.7877871168 3.7425095344 -0.8528451291 0.9023647458
56 3.3925243397 2.0567816170 -1.5012549764 1.0509363023
57 6.5606351579 4.9526897969 -6.4074868851 2.8794163834
58 8.6693249349 5.5829780000 -7.7365014128 3.7731582519
59 7.3140146079 6.1626334531 -2.5666988732 1.4377828932
60 4.4540711020 3.2783276423 -1.5508702552 1.1562760427



243

Connection Weights from Input Neurons to Hidden Neurons, continued.

Hidden Weight from Input Weight from Input Weight from Input Weight from Input
Unit # Unit 1 (14p') Unit 2 (fac') Unit 3 (P') Unit 4 (m')

61 8.6959212457 4.3950183481 -8.2673306988 3.3192308882
62 6.8590926498 5.2338174366 -5.3405761556 2.7861951046
63 5.5994531908 4.6946420631 -1.7528378392 1.3502764435
64 5.6507880054 4.2901177736 1.6111305022 -0.6173450499
65 4.7596039195 3.6873145888 -1.4026155634 1.1576116484
66 1.5322861201 0.9955594749 -0.9159873188 1.0631366131
67 4.7618314328 3.7148943228 -0.9220009948 0.9330239177
68 8.2518982245 5.2725598407 -7.7335781499 3.6354808011
69 4.1793682965 2.8983033426 -1.8301438017 1.2188452214
70 5.6455006847 4.5576487840 0.5542505322 0.1635146386
71 6.0820238134 4.2346587627 -5.6684518822 2.5831522040
72 6.1199028710 5.2432863710 0.3763180753 0.3559834331
73 7.0134737566 5.0167486276 -7.8778213613 3.2050323987
74 6.5966265270 5.7140595089 0.9666081947 0.0521330191
75 5.4508729468 4.5839156275 -1.0174090984 1.0471314124
76 3.9018611602 3.8107505551 -0.0501000366 -1.1389385025
77 6.9931828239 5.1634096155 -6.0556878775 3.0008769132
78 6.2590998975 4.3603643615 -5.8268508139 2.6685738433
79 6.3538981122 3.2020413800 -2.9933639430 1.4000415759
80 8.4178665012 3.9971090470 1.9594292023 -1.8501740849
81 6.3568724295 4.5836397608 -6.5263535369 2.8050457456
82 6.3022447962 4.5825292820 -5.3884750169 2.6213133419
83 6.3022382011 4.6930406963 -7.1424952991 2.8487860622
84 7.1079702177 5.3203489057 -6.5932349020 3.1276953049
85 4.4011932965 3.2800096569 -0.9625560987 0.8865704864
86 9.5780537903 4.9033176001 -5.5896673521 2.0727212982
87 7.7379219211 3.8283715970 -4.0923533274 1.6471480063
88 7.2067107805 6.9537653962 -0.6046491660 0.8229259356
89 6.5416804319 4.4061988382 -4.0134558238 2.0649929871
90 7.0783982740 5.2496992668 -7.2857696589 3.1883183489
91 6.7766766820 5.8539016913 1.5895922140 -0.3121058771
92 6.2067047984 5.0202030275 1.5641355297 -0.4244327819
93 9.2693599530 3.0437628971 -3.0765241096 1.6746848317
94 6.5662417511 5.8702358520 0.2979481310 0.4363396330
95 13.6475761078 -5.6215885360 -1.4613683496 0.5651192968
96 3.9832471962 2.8093751134 -1.2043265351 0.9341126802
97 5.3480019567 4.3962446288 -0.4170058165 0.7363097022
98 4.3559304429 3.1642052412 -1.6185308875 1.1770222128
99 7.4229247461 2.7710850246 -2.3014639552 0.8614948768

100 5.6887938998 4.5307969197 0.8361197493 -0.0257557078
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Biases on Hidden Neurons (vi).

Hidden Hidden Bias Hidden Bias
Unit # Unit # Unit #

1 3.8082978778 36 11.4490031228 71 9.3746573732
2 10.3827263545 37 12.4159486739 72 11.7998732100
3 8.2342276793 38 9.2613897556 73 10.5543215515
4 9.6004124394 39 12.7953539213 74 12.8843729046
5 2.1611620231 40 10.3361298015 75 10.0329477753
6 6.6521768535 41 11.4403615513 76 3.0214452234
7 9.6383318459 42 7.5011797723 77 11.0109747355
8 11.9453852910 43 11.1959711572 78 9.6060069085
9 10.5664333268 44 5.5920255013 79 5.7924893923

10 10.6984298582 45 6.0684955542 80 8.3565889830
11 12.7232380537 46 11.2181047045 81 9.8600384143
12 12.2457506141 47 10.3395526220 82 9.8798151795
13 1.2809154763 48 11.6874407070 83 9.8403545342
14 11.21.38004972 49 8.0937826602 84 11.1980331865
15 1- "34581360 50 4.3946611150 85 8.5809225207
16 9.9513223032 51 10.8220438593 86 7.9453609498
17 9.2008549431 52 9.1816159673 87 6.5699684714
18 10.7543296531 53 5.5659243474 88 13.0935492282
19 9.7060501240 54 -5.4732187486 89 8.3928981750
20 11.1379096222 55 9.2422660706 90 10.9651077721
21 5.7547505213 56 3.7399966944 91 13.5733451152
22 9.5873879323 57 10.3896402644 92 12.4274343852
23 10.6197606295 58 12.9493986637 93 4.52300845%
24 10.5552988578 59 10.7661643415 94 12.5166609376
25 9.5025851321 60 7.8908816703 95 3.6861536064
26 10.6667428820 61 7.6312123549 96 7.5938679165
27 3.3443466308 62 10.8447662360 97 10.2487885590
28 10.9839431056 63 9.6989032004 98 7.6700255334
29 11.8162697291 64 11.3996039797 99 4.8281690495
30 11.5023890494 65 8.7120620413 100 11.2422092308
31 9.9273277679 66 2.7699274071
32 10.0170524457 67 9.1479903510
33 11.6470873879 68 12.2077450117
34 9.5105163373 69 6.8620764800
35 11.3060943415 70 11.0819772712
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Bias on Output Neuron (vkl. Vk = 28.3367468575.

Connection Weights from Hidden Neurons to Output Neuron (Wjk).

Hidden Connection Hidden Connection Hidden Connection
Unit # Weight Unit # Weight Unit # Weight

1 2.6729999225 36 12.4315557302 71 14.1253511700
2 15.1194407352 37 18.4897487160 72 13.0293023108
3 8.5552947983 38 9.9317787892 73 16.5700592492
4 13.9590698688 39 13.8385077874 74 14.1936774149
5 5.5335396520 40 15.8135810714 75 11.8391901533
6 12.2497764944 41 16.9405366010 76 5.9229796697
7 14.6893595598 42 -4.2066273085 77 15.8084811382
8 18.6973734504 43 16.5481008570 78 14.2768198629
9 11.2916414428 44 8.5648175983 79 8.3123169811

10 15.6512757220 45 7.3530880231 80 9.0727104768
11 15.8048209389 46 16.6384138832 81 15.0403111451
12 13.0919133607 47 11.0915559557 82 14.3721521872
13 14.5485329654 48 13.2811287233 83 15.6975325900
14 13.5238570569 49 9.2043937661 84 16.3065792836
15 13.1746955903 50 8.4310567872 85 9.0410607670
16 14.3195935709 51 16.1447813862 86 13.1192371213
17 13.5664876232 52 9.6792589772 87 8.8235816060
18 11.5606103726 53 6.9280990274 88 15.4509507307
19 13.5651066988 54 13.9973174624 89 12.8430716235
20 16.4027285361 55 10.3218015290 90 16.6194152856
21 8.8460528317 56 2.3858103664 91 14.8577833182
22 10.2847334196 57 15.4804082069 92 13.4323065546
23 15.4047730470 58 18.7909152553 93 9.2025920052
24 11.0505598811 59 14.2774263642 94 14.1139245073
25 10.8101008187 60 8.7819946954 95 -16.7518735253
26 15.7110461447 61 13.8985728007 96 7.9649137692
27 7.5576619301 62 15.3771433466 97 11.4296690910
28 11.7229894086 63 12.1427437987 98 8.6036649471
29 12.5376381170 64 12.0736708497 99 4.8996634236
30 12.1687296792 65 10.2682684512 100 12.0673856518
31 13.3675326534 66 1.1309499541
32 14.5104669236 67 10.0464564065
33 17.5598706747 68 17.8946024102
34 14.6682644458 69 7.7338246795
35 12.2114058466 70 11.8485674966


